为了进一步增强视频图像超分辨率重建的效果,研究利用卷积神经网络的特性进行视频图像的空间分辨率重建,提出了一种基于卷积神经网络的视频图像重建模型。采取预训练的策略用于重建模型参数的初始化,同时在多帧视频图像的空间和时间维...为了进一步增强视频图像超分辨率重建的效果,研究利用卷积神经网络的特性进行视频图像的空间分辨率重建,提出了一种基于卷积神经网络的视频图像重建模型。采取预训练的策略用于重建模型参数的初始化,同时在多帧视频图像的空间和时间维度上进行训练,提取描述主要运动信息的特征进行学习,充分利用视频帧间图像的信息互补进行中间帧的重建。针对帧间图像的运动模糊,采用自适应运动补偿加以处理,对通道进行优化输出得到高分辨率的重建图像。实验表明,重建视频图像在平均客观评价指标上均有较大提升(PSNR+0. 4 d B/SSIM+0. 02),并且有效减少了图像在主观视觉效果上的边缘模糊现象。与其他传统算法相比,在图像评价的客观指标和主观视觉效果上均有明显的提升,为视频图像的超分辨率重建提供了一种基于卷积神经网络的新颖架构,也为进一步探索基于深度学习的视频图像超分辨率重建方法提供了思路。展开更多
针对多种放大倍数的人脸超分辨率重建问题,提出一种基于极深卷积神经网络的人脸超分辨率重建方法,并通过实验发现增加网络深度能够有效提升人脸重建的精度。首先,设计一个包含20个卷积层的网络从低分辨率图片和高分辨率图片之间学习一...针对多种放大倍数的人脸超分辨率重建问题,提出一种基于极深卷积神经网络的人脸超分辨率重建方法,并通过实验发现增加网络深度能够有效提升人脸重建的精度。首先,设计一个包含20个卷积层的网络从低分辨率图片和高分辨率图片之间学习一种端到端的映射关系,并通过在网络结构中将多个小的滤波器进行多次串联以扩大提取纹理信息的范围。其次,引入了残差学习的方法来解决随着深度的提升细节信息丢失的问题。另外,将不同放大因子的低分辨率人脸图片融合到一个训练集中训练,使得该卷积网络能够解决不同放大因子的人脸超分辨率重建问题。在CASPEAL测试集上的结果显示,该极深卷积神经网络的方法比基于双三次插值的人脸重建方法在峰值信噪比(PSNR)和结构相似度上有2.7 d B和2%的提升,和SRCNN的方法比较也有较大的提升,在精度和视觉改善方面都有较大提升。这显示了更深的网络结构能够在重建中取得更好的结果。展开更多
基于卷积神经网络的图像超分辨率重建算法是数字图像处理领域近年来的研究热点。针对低分辨率图像在预处理时使用双三次插值导致图像丢失一些重要的高频纹理细节以及网络模型优化问题,文章提出了连分式插值结合卷积神经网络的超分辨率...基于卷积神经网络的图像超分辨率重建算法是数字图像处理领域近年来的研究热点。针对低分辨率图像在预处理时使用双三次插值导致图像丢失一些重要的高频纹理细节以及网络模型优化问题,文章提出了连分式插值结合卷积神经网络的超分辨率重建方法。在原有的轻量级基于卷积神经网络的超分辨率重建算法(super-resolution convolutional neural net work,SRCNN)网络模型基础上,首先采用Newton-Thiele型连分式插值函数将低分辨率图像插值到目标尺寸;然后利用3个卷积层进行图像特征提取、非线性映射、重建与优化;该文在网络收敛时利用Radam优化算法自适应地调整梯度,并且采用余弦衰减法逐渐降低学习率。实验结果表明,该网络模型能够在轻量级的卷积神经网络下获得更丰富的纹理细节和更清晰的图像边缘。展开更多
文摘为了进一步增强视频图像超分辨率重建的效果,研究利用卷积神经网络的特性进行视频图像的空间分辨率重建,提出了一种基于卷积神经网络的视频图像重建模型。采取预训练的策略用于重建模型参数的初始化,同时在多帧视频图像的空间和时间维度上进行训练,提取描述主要运动信息的特征进行学习,充分利用视频帧间图像的信息互补进行中间帧的重建。针对帧间图像的运动模糊,采用自适应运动补偿加以处理,对通道进行优化输出得到高分辨率的重建图像。实验表明,重建视频图像在平均客观评价指标上均有较大提升(PSNR+0. 4 d B/SSIM+0. 02),并且有效减少了图像在主观视觉效果上的边缘模糊现象。与其他传统算法相比,在图像评价的客观指标和主观视觉效果上均有明显的提升,为视频图像的超分辨率重建提供了一种基于卷积神经网络的新颖架构,也为进一步探索基于深度学习的视频图像超分辨率重建方法提供了思路。
文摘针对多种放大倍数的人脸超分辨率重建问题,提出一种基于极深卷积神经网络的人脸超分辨率重建方法,并通过实验发现增加网络深度能够有效提升人脸重建的精度。首先,设计一个包含20个卷积层的网络从低分辨率图片和高分辨率图片之间学习一种端到端的映射关系,并通过在网络结构中将多个小的滤波器进行多次串联以扩大提取纹理信息的范围。其次,引入了残差学习的方法来解决随着深度的提升细节信息丢失的问题。另外,将不同放大因子的低分辨率人脸图片融合到一个训练集中训练,使得该卷积网络能够解决不同放大因子的人脸超分辨率重建问题。在CASPEAL测试集上的结果显示,该极深卷积神经网络的方法比基于双三次插值的人脸重建方法在峰值信噪比(PSNR)和结构相似度上有2.7 d B和2%的提升,和SRCNN的方法比较也有较大的提升,在精度和视觉改善方面都有较大提升。这显示了更深的网络结构能够在重建中取得更好的结果。
文摘基于卷积神经网络的图像超分辨率重建算法是数字图像处理领域近年来的研究热点。针对低分辨率图像在预处理时使用双三次插值导致图像丢失一些重要的高频纹理细节以及网络模型优化问题,文章提出了连分式插值结合卷积神经网络的超分辨率重建方法。在原有的轻量级基于卷积神经网络的超分辨率重建算法(super-resolution convolutional neural net work,SRCNN)网络模型基础上,首先采用Newton-Thiele型连分式插值函数将低分辨率图像插值到目标尺寸;然后利用3个卷积层进行图像特征提取、非线性映射、重建与优化;该文在网络收敛时利用Radam优化算法自适应地调整梯度,并且采用余弦衰减法逐渐降低学习率。实验结果表明,该网络模型能够在轻量级的卷积神经网络下获得更丰富的纹理细节和更清晰的图像边缘。