期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于TF-IDF算法的P2P贷款违约预测模型 被引量:10
1
作者 章宁 陈钦 《计算机应用》 CSCD 北大核心 2018年第10期3042-3047,共6页
针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等... 针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等信息,建立基于投资人效用的贷款违约预测模型;然后,借鉴信息检索TF-IDF算法,构造投资人逆向投资比例因子,对投资人差异性进行量化度量,优化模型中投资人权重计算因子。实验结果表明,该模型预测准确度与其他模型相比平均提高了6%左右,并在不同的测试数据集上都保持最优。 展开更多
关键词 贷款违约预测 效用理论 信息检索 词频逆文本频率 个人对个人借贷 曲线下面积
在线阅读 下载PDF
基于机器学习的个人贷款违约预测模型的应用研究 被引量:9
2
作者 张丽颖 杨若瑾 《金融监管研究》 CSSCI 北大核心 2022年第6期46-59,共14页
针对贷款违约给商业银行带来的信用风险损失,本文基于Kaggle平台的Loan Defaulter数据集,通过建立机器学习模型预测客户违约情况,以降低信贷风险。本文根据贷款数据类别不平衡和特征维度高的特点,对其进行数据处理以及探索性数据分析,... 针对贷款违约给商业银行带来的信用风险损失,本文基于Kaggle平台的Loan Defaulter数据集,通过建立机器学习模型预测客户违约情况,以降低信贷风险。本文根据贷款数据类别不平衡和特征维度高的特点,对其进行数据处理以及探索性数据分析,得出与贷款违约高度相关的重要特征,包括性别、家庭人数以及借款人所在城市、住房类型、总收入、所属行业、职业类型、工作年限、受教育程度、消费贷款额度、贷款金额、贷款年金等。在比较各类模型的基础上,本文选择表现较好的随机森林,XGBoost以及K近邻组合为Stacking集成模型。实验表明,与单一算法相比,该模型的集成算法具有更高的精确度和预测效果,其中Stacking模型能够融合其他基础模型的优点,取得最好的预测效果。本文主要创新点有二:一是梳理信用评估模型中集成模型的基本特征,基于不同模型的优势,引入Stacking模型组合建模,融合四组机器学习模型并建立双层学习器,提高了信用风险评估效果;二是基于普惠金融发展,将研究对象具体化为个人信贷,应用场景更加细化,并得出影响贷款违约的重要特征。 展开更多
关键词 贷款违约预测 数据分析 集成算法 模型融合
在线阅读 下载PDF
基于AUC及Q统计值的集成学习训练方法 被引量:15
3
作者 章宁 陈钦 《计算机应用》 CSCD 北大核心 2019年第4期935-939,共5页
针对借贷过程中的信息不对称问题,为更有效地整合不同的数据源和贷款违约预测模型,提出一种集成学习的训练方法,使用AUC(Area Under Curve)值和Q统计值对学习器的准确性和多样性进行度量,并实现了基于AUC和Q统计值的集成学习训练算法(TA... 针对借贷过程中的信息不对称问题,为更有效地整合不同的数据源和贷款违约预测模型,提出一种集成学习的训练方法,使用AUC(Area Under Curve)值和Q统计值对学习器的准确性和多样性进行度量,并实现了基于AUC和Q统计值的集成学习训练算法(TABAQ)。基于个人对个(P2P)贷款数据进行实证分析,发现集成学习的效果与基学习器的准确性和多样性关系密切,而与所集成的基学习器数量相关性较低,并且各种集成学习方法中统计集成表现最好。实验还发现,通过融合借款人端和投资人端的信息,可以有效地降低贷款违约预测中的信息不对称性。TABAQ能有效发挥数据源融合和学习器集成两方面的优势,在保持预测准确性稳步提升的同时,预测的一类错误数量更是进一步下降了4.85%。 展开更多
关键词 集成学习 曲线下面积 Q统计值 贷款违约预测 信息不对称性 个人对个人借贷
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部