期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
板坯轧制H型钢粗轧异型坯过程的有限元模拟 被引量:4
1
作者 牛海山 赵宪明 吴迪 《塑性工程学报》 CAS CSCD 北大核心 2006年第5期41-44,共4页
利用有限元分析软件ANSYS-LSDYNA,对板坯切分法轧制H型钢异型坯进行了有限元模拟。详细介绍了轧制规程、模拟基本参数、有限元模型建立、网格划分。在模拟过程中应用质量放缩、沙漏控制技术,得到了各道次轧件变形结果及轧制力曲线。对... 利用有限元分析软件ANSYS-LSDYNA,对板坯切分法轧制H型钢异型坯进行了有限元模拟。详细介绍了轧制规程、模拟基本参数、有限元模型建立、网格划分。在模拟过程中应用质量放缩、沙漏控制技术,得到了各道次轧件变形结果及轧制力曲线。对轧件的变形和变形区应力、应变场进行深入分析,为轧制大规格H型钢的显式动力学有限元模拟提供了参考。 展开更多
关键词 板坯 H型钢 异型坯 ANSYS/LS-DYNA 质量放缩
在线阅读 下载PDF
Numerical investigations on HCCI engine with increased induction induced swirl and engine speed 被引量:1
2
作者 T.Karthikeya Sharma G.Amba Prasad Rao K.Madhu Murthy 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3837-3848,共12页
Homogeneous charge compression ignition(HCCI) mode of combustion is popularly known for achieving simultaneous reduction of NOx as well as soot emissions as it combines the compression ignition(CI) and spark ignition(... Homogeneous charge compression ignition(HCCI) mode of combustion is popularly known for achieving simultaneous reduction of NOx as well as soot emissions as it combines the compression ignition(CI) and spark ignition(SI) engine features. In this work, a CI engine was simulated to work in HCCI mode and was analyzed to study the effect of induction induced swirl under varying speeds using three-zone extended coherent flame combustion model(ECFM-3Z, compression ignition) of STAR-CD. The analysis was done considering speed ranging from 800 to 1600 r/min and swirl ratios from 1 to 4. The present study reveals that ECFM-3Z model has well predicted the performance and emissions of CI engine in HCCI mode. The simulation predicts reduced in-cylinder pressures, temperatures, wall heat transfer losses, and piston work with increase in swirl ratio irrespective of engine speed. Also, simultaneous reduction in CO2 and NOx emissions is realized with higher engine speeds and swirl ratios. Low speeds and swirl ratios are favorable for low CO2 emissions. It is observed that increase in engine speed causes a marginal reduction in in-cylinder pressures and temperatures. Also, higher turbulent energy and velocity magnitude levels are obtained with increase in swirl ratio, indicating efficient combustion necessitating no modifications in combustion chamber design. The investigations reveal a total decrease of 38.68% in CO2 emissions and 12.93% in NOx emissions when the engine speed increases from 800 to 1600 r/min at swirl ratio of 4. Also an increase of 14.16% in net work done is obtained with engine speed increasing from 800 to 1600 r/min at swirl ratio of 1. The simulation indicates that there is a tradeoff observed between the emissions and piston work. It is finally concluded that the HCCI combustion can be regarded as low temperature combustion as there is significant decrease in in-cylinder temperatures and pressures at higher speeds and higher swirl ratios. 展开更多
关键词 HCCI engine ECFM-3Z swirl ratio emissions and performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部