This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is d...This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is disclosed in the neighborhood of stagnation point.Features of heat transport are characterized with Newtonian heating and variable thermal conductivity.Mass transport is carried out with first order chemical reaction and variable mass diffusivity.Resulting governing equations are transformed by implementation of appropriate transformations.Analytical convergent series solutions are computed via homotopic technique.Physical aspects of numerous parameters are discussed through graphical data.Drag force coefficient,Sherwood and Nusselt numbers are illustrated through graphs corresponding to various pertinent parameters.Graphical discussion reveals that conjugate and constructive chemical reaction parameters enhance the temperature and concentration distributions,respectively.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
文摘This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is disclosed in the neighborhood of stagnation point.Features of heat transport are characterized with Newtonian heating and variable thermal conductivity.Mass transport is carried out with first order chemical reaction and variable mass diffusivity.Resulting governing equations are transformed by implementation of appropriate transformations.Analytical convergent series solutions are computed via homotopic technique.Physical aspects of numerous parameters are discussed through graphical data.Drag force coefficient,Sherwood and Nusselt numbers are illustrated through graphs corresponding to various pertinent parameters.Graphical discussion reveals that conjugate and constructive chemical reaction parameters enhance the temperature and concentration distributions,respectively.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.