Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content mea...Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.展开更多
Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wi...Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.展开更多
Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, del...Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).展开更多
文摘Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.
基金supported in part by the National Natural Science Foundation of China(Nos.61771368 and 61671347)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)
文摘Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.
基金supported in part by the project of National Natural Science Foundation of China under Grant No. 61071075National Science and Technology Major Project of China under Grant No. 2010ZX03003-001-02+1 种基金National Science and Technology Major Project of China under Grant No. 2011ZX03004003the Chinese Ministry of Education in the project of the Fundamental Research Funds for the Central Universities under Grant No.2011YJS216
文摘Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).