以玉米恢复系614、B137分别与CMS–C型雄性不育系C543组配的F2代(614群体和B317群体)为试材,进行花粉育性鉴定和遗传分析。花粉育性镜检发现,C543花药内没有花粉,属于无花粉型雄性不育;遗传分析表明,C543的不育性状由1对隐性核基因控制...以玉米恢复系614、B137分别与CMS–C型雄性不育系C543组配的F2代(614群体和B317群体)为试材,进行花粉育性鉴定和遗传分析。花粉育性镜检发现,C543花药内没有花粉,属于无花粉型雄性不育;遗传分析表明,C543的不育性状由1对隐性核基因控制,恢复系614和B137各有1对核恢复基因;SSR标记连锁分析结果将恢复基因定位在玉米8号染色体短臂上,位于标记umc1483附近,两者距离约16.9 c M。展开更多
As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and...As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.展开更多
文摘以玉米恢复系614、B137分别与CMS–C型雄性不育系C543组配的F2代(614群体和B317群体)为试材,进行花粉育性鉴定和遗传分析。花粉育性镜检发现,C543花药内没有花粉,属于无花粉型雄性不育;遗传分析表明,C543的不育性状由1对隐性核基因控制,恢复系614和B137各有1对核恢复基因;SSR标记连锁分析结果将恢复基因定位在玉米8号染色体短臂上,位于标记umc1483附近,两者距离约16.9 c M。
基金The research is funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).
文摘As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.