Ba0.95Ce0.9Y0.1O3-α solid electrolyte was prepared by high temperature solid state reaction. The electrochemical oxygen permeation (oxygen pumping) rates and oxide ion transport number in this electrolyte were detec...Ba0.95Ce0.9Y0.1O3-α solid electrolyte was prepared by high temperature solid state reaction. The electrochemical oxygen permeation (oxygen pumping) rates and oxide ion transport number in this electrolyte were detected in the temperature of 600~ 1000℃ . It was found that this electrolyte exhibited the oxide ion conduction with the oxide ion transport number of 0.3~ 0.5.展开更多
In recent years,the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study.Sod...In recent years,the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study.Sodium-ion batteries,leveraging their chemical similarity to lithium-ion batteries,along with their abundant resources and low cost,are seen as a viable alternative to lithium-ion batteries.Additionally,all-solid-state sodium-ion batteries have drawn significant attention due to safety considerations.Among the solid electrolytes for all-solid-state sodium-ion batteries,the NASICON solid-state electrolyte emerges as one of the most promising choices for sodium battery solid electrolytes.However,to date,there has not been a comprehensive review summarizing the existing problems of NASICON electrolyte materials and the corresponding specific modification methods.This review simply summarizes the present issues of NASICON for all-solid-state sodium-ion batteries,such as,the low ionic conductivity,the poor interface stability and compatibility,and the dendrite formation.Then,the corresponding solutions to address these issues are discussed,including the ion doping,the interface modification,the sintering parameters optimization,and the composite electrolytes regulation.Finally,the perspectives of NASICON solid-state electrolyte are discussed.展开更多
Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and con...Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.展开更多
With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte s...With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.展开更多
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal...In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.展开更多
文摘Ba0.95Ce0.9Y0.1O3-α solid electrolyte was prepared by high temperature solid state reaction. The electrochemical oxygen permeation (oxygen pumping) rates and oxide ion transport number in this electrolyte were detected in the temperature of 600~ 1000℃ . It was found that this electrolyte exhibited the oxide ion conduction with the oxide ion transport number of 0.3~ 0.5.
基金Projects(52204378,22309209)supported by the National Natural Science Foundation of ChinaProject(2023JJ40709)supported by the Natural Science Foundation of Hunan Province,China。
文摘In recent years,the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study.Sodium-ion batteries,leveraging their chemical similarity to lithium-ion batteries,along with their abundant resources and low cost,are seen as a viable alternative to lithium-ion batteries.Additionally,all-solid-state sodium-ion batteries have drawn significant attention due to safety considerations.Among the solid electrolytes for all-solid-state sodium-ion batteries,the NASICON solid-state electrolyte emerges as one of the most promising choices for sodium battery solid electrolytes.However,to date,there has not been a comprehensive review summarizing the existing problems of NASICON electrolyte materials and the corresponding specific modification methods.This review simply summarizes the present issues of NASICON for all-solid-state sodium-ion batteries,such as,the low ionic conductivity,the poor interface stability and compatibility,and the dendrite formation.Then,the corresponding solutions to address these issues are discussed,including the ion doping,the interface modification,the sintering parameters optimization,and the composite electrolytes regulation.Finally,the perspectives of NASICON solid-state electrolyte are discussed.
文摘Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity,morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry,scanning electron microscopy,atom force microscopy and alternating current impedance spectroscopy,respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler,that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%,the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5 S·cm-1.
基金Projects(51974368,51774333) supported by the National Natural Science Foundation of ChinaProject(2020JJ2048) supported by the Hunan Provincial Natural Science Foundation of China。
文摘With increasing demand on energy density of lithium-ion battery,wide electrochemical window and safety performance are the crucial request for next generation electrolyte.Gel-electrolyte as a pioneer for electrolyte solidization development aims to solve the safety and electrochemical window problems.However,low ionic conductivity and poor physical performance prohibit its further application.Herein,a fast-ionic conductor(Li_(2.64)(Sc_(0.9)Ti_(0.1))_(2)(PO_(4))_(3))(LSTP)was added into poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)base gel-electrolyte to enhance mechanical properties and ionic conductivity.Evidences reveal that LSTP was able to weaken interforce between polymer chains,which increased the ionic conductibility and decreased interface resistance during the cycling significantly.The obtained LiFePO_(4)/hybrid gel-electrolyte/Li-metal coin cell exhibited excellent rate capacity(145 mA·h/g at 1C,95 mA·h/g at 3C,28℃)which presented a potential that can be comparable with commercialized liquid electrolyte system.
基金Project(51172287)supported by the National Natural Science Foundation of ChinaProject(2012-2013)supported by the Laboratory Research Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.