期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GPS轨迹数据的货车交通流量需求预测循环神经网络模型 被引量:10
1
作者 王晟由 邵春福 +2 位作者 董春娇 黄士琛 郑炎 《北京交通大学学报》 CAS CSCD 北大核心 2021年第3期15-23,共9页
动力性差、尺寸大是货车影响道路交通流运行效率的重要原因,为提高货车运行效率,对快速路货车流量预测问题进行研究.基于货车GPS轨迹数据,构建长短时循环神经网络(Long Short Term Memory,LSTM),门控神经单元(Gated Recurrent Unit,GRU)... 动力性差、尺寸大是货车影响道路交通流运行效率的重要原因,为提高货车运行效率,对快速路货车流量预测问题进行研究.基于货车GPS轨迹数据,构建长短时循环神经网络(Long Short Term Memory,LSTM),门控神经单元(Gated Recurrent Unit,GRU),双向长短时记忆网络(Bidirectional Long Short Term Memory,Bi-LSTM)和双向门控神经单元(Bidirectional Gated Recurrent Unit,Bi-GRU)四种货车交通流量需求预测循环神经网络模型.研究结果表明:货车交通流量需求预测循环神经网络模型对货车交通流量具有很好的预测能力,平均预测精度为91.55%,较ARIMA高出10.45%;GRU模型对整体货车流量序列预测精度最高;低峰时段平均预测精度高于高峰时段,LSTM在波动较强的高峰时段预测精度最高,为96.83%;Bi-GRU在低峰时段的预测精度最高,为97.66%.研究成果将为政策制定者选用合适的循环神经网络模型,精准预测货车流量,提高货车交通运行效率提供理论和技术支持. 展开更多
关键词 交通工程 货车交通流量预测 LSTM GRU Bi-LSTM Bi-GRU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部