期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
云环境下弹性负载均衡方法的研究 被引量:7
1
作者 白延敏 薛进 马维华 《小型微型计算机系统》 CSCD 北大核心 2014年第4期814-817,共4页
针对传统弹性算法存在的系统抖动、伸缩效率低等问题,提出了云环境下的弹性负载均衡方法.该方法采用集中式设计,建立了弹性负载均衡的总体架构,设计了三级缓冲池及缓冲池管理流程,以提高系统扩展效率.针对于实时负载数据的波动性,该方... 针对传统弹性算法存在的系统抖动、伸缩效率低等问题,提出了云环境下的弹性负载均衡方法.该方法采用集中式设计,建立了弹性负载均衡的总体架构,设计了三级缓冲池及缓冲池管理流程,以提高系统扩展效率.针对于实时负载数据的波动性,该方法结合移动均值算法,利用负载周期变化的特点,提出了负载预测算法.并在此基础上,设计了支持节点批量增减的弹性调度算法,控制系统的整体伸缩和任务的分配.最后对比了传统的双阈值弹性集群和使用本方法的弹性负载均衡集群,并对实验结果统计和分析,验证本文提出的云环境下弹性负载均衡方法的有效性. 展开更多
关键词 负载均衡 云计算 弹性调度算法 负载预测算法 三级缓冲池
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
2
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部