This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of ...This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.展开更多
Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the ph...Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.展开更多
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper...In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.展开更多
文摘This paper presents the design and verification of the dual-mode core driven fan stage(CDFS)and high-load compressor with a large flow regulation range.In view of the characteristics of large flow regulation range of the two modes and high average stage load coefficient,this paper investigates the design technology of the dual-mode high-efficiency compressor with a large flow regulation range and high-load compressor with an average stage load coefficient of 0.504.Building upon this research,the design of the dual-mode CDFS and four-stage compressor is completed,and three-dimensional numerical simulation of the two modes is carried out.Finally,performance experiment is conducted to verify the result of three-dimensional numerical simulation.The experiment results show that the compressor performance is improved for the whole working conditions by using the new design method,which realizes the complete fusion design of the CDFS and high-pressure compressor(HPC).The matching mechanism of stage characteristics of single and double bypass modes and the variation rule of different adjustment angles on performance are studied comprehensively.Furthermore,it effectively reduces the length and weight of compressor,and breaks through the key technologies such as high-load compressor with the average load factor of 0.504.These findings provide valuable data and a methodological foundation for the development of the next generation aeroengine.
基金This research was partially supported by the National Grand Fundamental Research 973 Program of China under Grant (No. 2013CB329103), Natural Science Foundation of China grant (No. 61271171), the Fundamental Research Funds for the Central Universities (ZYGX2013J002, ZYGX2012J004, ZYGX2010J002, ZYGX2010J009), Guangdong Science and Technology Project (2012B090500003, 2012B091000163, 2012556031).
文摘Virtualization is a common technology for resource sharing in data center. To make efficient use of data center resources, the key challenge is to map customer demands (modeled as virtual data center, VDC) to the physical data center effectively. In this paper, we focus on this problem. Distinct with previous works, our study of VDC embedding problem is under the assumption that switch resource is the bottleneck of data center networks (DCNs). To this end, we not only propose relative cost to evaluate embedding strategy, decouple embedding problem into VM placement with marginal resource assignment and virtual link mapping with decided source-destination based on the property of fat-tree, but also design the traffic aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map virtual data center requests to a physical data center. Simulation results show that TAE+FFLM could increase acceptance rate and reduce network cost (about 49% in the case) at the same time. The traffie aware embedding algorithm reduces the load of core-link traffic and brings the optimization opportunity for data center network energy conservation.
基金supported by the National Natural Science Foundation of China under Grants No.60972038,No.61001077,No.61101105 the Scientific Research Foundation for Nanjing University of Posts and Telecommunications under Grant No.NY211007+2 种基金 the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2011D05 Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20113223120002 University Natural Science Research Project of Jiangsu Province under Grant No.11KJB510016
文摘In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.