本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层...本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层体陷阱密度和界面态密度),并得到PMOSFET器件阈值电压的漂移(ΔVth)信息。这种方法可以有效避免NBTI恢复效应的影响。展开更多
从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作...从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。展开更多
器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟...器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟道空穴浓度,因而,改变沟道掺杂浓度和栅氧化层厚度会引起NBTI退化的不同。首先利用pMOSFETS器件的能带图和NBTI的退化模型,推导出了器件NBTI随器件参数变化的公式,并修订了NBTI的数值模拟方法,然后分别利用理论计算和数值模拟的方法对不同器件参数、相同阈值电压的器件进行定量地计算和仿真,继而总结出一种分析器件NBTI退化的应用模型,可对集成电路和器件的可靠性设计提供指导。展开更多
文摘本文提出了一种在线表征负偏压温度不稳定性(NBTI,negative bias temperature insta-bility)退化的方法--直接隧道栅电流表征法(DTGCM,DT Gate Current Method)。用这种方法可以得到NBTI应力诱生在超薄栅氧化层中的缺陷密度(包括氧化层体陷阱密度和界面态密度),并得到PMOSFET器件阈值电压的漂移(ΔVth)信息。这种方法可以有效避免NBTI恢复效应的影响。
文摘从二维模拟pMOS器件得到沟道空穴浓度和栅氧化层电场,用于计算负栅压偏置温度不稳定性NBTI(Negative bias temperature instability)效应的界面电荷的产生,是分析研究NBTI可靠性问题的一种有效方法。首先对器件栅氧化层/硅界面的耦合作用进行模拟,通过大量的计算和已有的实验比对分析得出:当NBTI效应界面电荷产生时,栅氧化层电场是增加了,但并没有使界面电荷继续增多,是沟道空穴浓度的降低决定了界面电荷有所减少(界面耦合作用);当界面电荷的产生超过1012/cm2时,界面的这种耦合作用非常明显,可以被实验测出;界面耦合作用使NBTI退化减小,是一种新的退化饱和机制,类似于"硬饱和",但是不会出现强烈的时间幂指数变化。
文摘器件的负偏压温度不稳定性(Negative bias temperature instability,NBTI)退化依赖于栅氧化层中电场的大小和强反型时沟道空穴浓度,沟道掺杂浓度的不同显然会引起栅氧化层电场的变化。栅氧化层的厚度不仅影响栅氧化层电场,而且会影响沟道空穴浓度,因而,改变沟道掺杂浓度和栅氧化层厚度会引起NBTI退化的不同。首先利用pMOSFETS器件的能带图和NBTI的退化模型,推导出了器件NBTI随器件参数变化的公式,并修订了NBTI的数值模拟方法,然后分别利用理论计算和数值模拟的方法对不同器件参数、相同阈值电压的器件进行定量地计算和仿真,继而总结出一种分析器件NBTI退化的应用模型,可对集成电路和器件的可靠性设计提供指导。