期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯优化算法的超表面结构色逆向设计方法
1
作者 黄子扬 张振荣 +2 位作者 孙宇 黄洋 谢锋 《光通信技术》 北大核心 2025年第3期97-101,共5页
针对传统结构色正向设计存在的优化参数较少、计算耗时长以及静态结构色不可调等问题,提出一种基于贝叶斯优化算法的超表面结构色逆向设计方法。通过引入可调谐的相变材料设计纳米天线,结合贝叶斯优化算法和时域有限差分法,对超表面结... 针对传统结构色正向设计存在的优化参数较少、计算耗时长以及静态结构色不可调等问题,提出一种基于贝叶斯优化算法的超表面结构色逆向设计方法。通过引入可调谐的相变材料设计纳米天线,结合贝叶斯优化算法和时域有限差分法,对超表面结构色参数进行仿真优化。利用结构内部的Mie谐振在反射模式下产生结构颜色,同时通过相变材料的不同相态转变,实现可逆的颜色调谐。仿真结果表明:所设计的结构色器件具备超表面的颜色动态可调谐功能,在波长分别为450、545、660nm时获得的色差分别为63.30、69.30、54.21,并具有角度敏感的特性。 展开更多
关键词 结构色 相变材料 贝叶斯优化算法 表面结构
在线阅读 下载PDF
基于贝叶斯超参数优化的BiLSTM模型DGA域名生成方法
2
作者 李博文 乔延臣 +3 位作者 王继刚 陆柯羽 张宇 张伟哲 《信息安全研究》 北大核心 2025年第10期950-959,共10页
近年来,域名生成算法(domain generation algorithm,DGA)在网络攻击中被广泛使用,为恶意软件通信动态生成大量随机域名,给安全防御带来严峻挑战.随着DGA结构日益复杂,传统依赖手动提取特征的域名分类方法难以及时适配新型变种;而基于生... 近年来,域名生成算法(domain generation algorithm,DGA)在网络攻击中被广泛使用,为恶意软件通信动态生成大量随机域名,给安全防御带来严峻挑战.随着DGA结构日益复杂,传统依赖手动提取特征的域名分类方法难以及时适配新型变种;而基于生成的深度模型虽然能从数据分布中自动捕捉潜在规律,却常因参数规模庞大与调参难度高而无法在面对多样化DGA时保持稳定表现.为了应对这一挑战,提出了一种基于贝叶斯超参数优化(Bayesian hyperparameter optimization,Bayesian HPO)的双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)模型的DGA域名生成方法,预测并生成用于僵尸网络中恶意行为的拦截DGA域名黑名单.贝叶斯超参数优化技术通过自动调优关键超参数显著减轻了人工干预与训练成本,并提升了模型对不同DGA的鲁棒性与泛化能力.实验结果表明,该方法在多种DGA域名上均展现了优秀的生成准确率,可以为网络安全提供一种主动、防御前移的新思路. 展开更多
关键词 域名生成算法 双向长短期记忆网络 贝叶斯参数优化 DGA域名生成 网络安全
在线阅读 下载PDF
自适应光学系统迭代控制算法超参数优化 被引量:3
3
作者 罗宇湘 杨慧珍 +1 位作者 何源烽 张之光 《应用光学》 CAS 北大核心 2024年第1期126-133,共8页
无波前探测自适应光学系统中,选择合适的超参数是迭代控制算法达到最佳性能的关键。现有的迭代控制算法的超参数设置一般采用遍历法,这种方法虽然容易理解和实现,但计算量大、耗时较长,同时也可能因为找到一个局部最优值而错过全局最优... 无波前探测自适应光学系统中,选择合适的超参数是迭代控制算法达到最佳性能的关键。现有的迭代控制算法的超参数设置一般采用遍历法,这种方法虽然容易理解和实现,但计算量大、耗时较长,同时也可能因为找到一个局部最优值而错过全局最优值。本文采用贝叶斯优化方法,选择适合自适应光学系统迭代控制算法的超参数。分别以常用的随机并行梯度下降算法(stochastic parallel gradient descent algorithm,SPGD)、Momentum-SPGD和CoolMomentum-SPGD控制算法为例,对比分析采用遍历法和贝叶斯优化方法选择超参数的控制算法的校正效果。结果表明,采用贝叶斯优化方法进行超参数选择优势明显。对于SPGD控制算法,取得相同收敛效果时,贝叶斯优化方法所需样本实例数量是遍历法的10%;对于Momentum-SPGD和CoolMomentum-SPGD控制算法,贝叶斯优化方法所需样本实例数量分别是遍历法的7%和9%。研究结果可为自适应光学系统迭代控制算法的实际应用提供超参数设置理论基础。 展开更多
关键词 参数优化 贝叶斯优化 自适应光学 迭代控制算法
在线阅读 下载PDF
传统机器学习模型的超参数优化技术评估 被引量:25
4
作者 李海霞 宋丹蕾 +2 位作者 孔佳宁 宋亚飞 常海艳 《计算机科学》 CSCD 北大核心 2024年第8期242-255,共14页
合理的超参数能够保证机器学习模型适应不同背景和不同任务。为了避免在模型超参数数量过多、搜索空间过大的情况下出现手动调节导致的效率低下问题,多种超参数优化技术已经被研发并运用到机器学习模型训练中。文中首先回顾了8种常见的... 合理的超参数能够保证机器学习模型适应不同背景和不同任务。为了避免在模型超参数数量过多、搜索空间过大的情况下出现手动调节导致的效率低下问题,多种超参数优化技术已经被研发并运用到机器学习模型训练中。文中首先回顾了8种常见的超参数优化技术,即网格搜索、随机搜索、贝叶斯优化、Hyperband、BOHB、遗传算法、粒子群优化算法和协方差矩阵自适应进化策略,并从时间性能、最终结果、并行能力、可拓展性、稳健性和灵活性5个方面分析各类方法的优缺点。其次,将8种方法应用到LightGBM、XGBoost、随机森林和KNN这4种传统机器学习模型上,在4个基准数据集上完成了回归、二分类和多分类的实验,对各类方法进行了比较。最后总结了各类方法的优缺点,给出了不同方法的适用情景。 展开更多
关键词 传统机器学习 参数优化 贝叶斯优化 多保真技术 元启发式算法
在线阅读 下载PDF
基于去噪自编码器网络特征降维与改进小批优化K均值算法的海量用户用电行为聚类及分析 被引量:13
5
作者 汪颖 杨维 +1 位作者 肖先勇 张姝 《电力自动化设备》 EI CSCD 北大核心 2022年第6期146-153,共8页
海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络... 海量用户用电特性的挖掘与分析对实现电网与用户间的双向互动具有十分重要的意义。提出一种适用于海量用户用电行为聚类及分析的算法,以降低算法时间复杂度,提升海量用户负荷数据分析效率。提取用户用电行为特征,构建多层去噪自编码网络,实现多维特征的降维;利用小批优化K均值算法进行聚类分析,并对算法进行初始聚类质心优化与超参数优化的改进以提升算法收敛速度与效果,其中超参数优化利用基于高斯过程的贝叶斯优化算法进行;利用类间分离度和类内内聚度的相关指标对聚类效果进行评价;通过互信息筛选有效聚类特征,实现用户画像。算例结果表明,所提方法在特征优化、聚类效果与收敛速度上均有较好的表现。 展开更多
关键词 用电行为 特征降维 聚类分析 互信息 小批优化K均值算法 参数优化 贝叶斯优化
在线阅读 下载PDF
基于集成学习的压电陶瓷烧结过程质量预测建模 被引量:2
6
作者 马超 翁智逸 何非 《计算机集成制造系统》 北大核心 2025年第1期147-157,共11页
烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指... 烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指标间的关系进行分析,建立质量预测模型,实现对烧结工艺的质量预测及控制。通过采取集成学习CatBoost算法,并结合贝叶斯超频带(BOHB)超参数优化算法,以五折交叉验证的方式建立了BOHB-CatBoost质量预测模型。最后,结合RMSE和R^(2)两个指标评估模型的性能,并与其他预测模型进行对比,验证了该模型具有更高的预测精度以及稳健性,对压电陶瓷的烧结生产过程具有较好的指导意义。 展开更多
关键词 压电陶瓷 质量预测 贝叶斯频带参数优化算法 CatBoost算法
在线阅读 下载PDF
基于贝叶斯公式的地下水污染源识别 被引量:14
7
作者 张双圣 强静 +2 位作者 刘汉湖 刘喜坤 朱雪强 《中国环境科学》 EI CAS CSCD 北大核心 2019年第4期1568-1578,共11页
将贝叶斯公式与地下水二维水质对流-扩散方程相耦合,建立依靠监测井监测值的地下水污染源参数(污染源强度M、排放位置(X_0,Y_0)和排放时刻T_0)反演模型.针对监测井监测值信息量不充分或者监测值与模型参数关联性较弱的问题,提出了一种... 将贝叶斯公式与地下水二维水质对流-扩散方程相耦合,建立依靠监测井监测值的地下水污染源参数(污染源强度M、排放位置(X_0,Y_0)和排放时刻T_0)反演模型.针对监测井监测值信息量不充分或者监测值与模型参数关联性较弱的问题,提出了一种基于贝叶斯公式与信息熵的监测井优化设计方法.构建一个污染物在承压含水层中瞬时排放的算例,在确定单井监测及监测次数条件下,以监测井位置D及监测频率△t的优化为目标,分别进行模型参数后验分布信息熵最小的单目标监测方案优化,以及信息熵最小且监测耗时最短的多目标监测方案优化.依据优化后的监测方案采用延迟拒绝自适应Metropolis算法进行污染源参数反演识别.算例研究表明:在预设定单井监测,且监测次数为5次条件下,单目标优化后的监测方案为D=(830.2,199.8),△t=2.7,在此监测方案下,4个污染源参数M, X_0, Y_0, T_0的反演均值误差分别为19.5%、13.2%、3.4%、1.3%;多目标优化后的监测方案为D=(807.9,199.4),△t=1.2,在此监测方案下,4个污染源参数M, X_0, Y_0, T_0的反演均值误差分别为19.9%、13.4%、3.7%、4.2%.与基于单目标优化的监测方案的反演结果相比,基于多目标优化的监测方案条件下,污染源参数的反演均值误差虽分别增加了0.4%、0.2%、0.3%、2.9%,但监测时间却显著缩短了55.6%. 展开更多
关键词 监测井优化 污染源识别 贝叶斯公式 信息熵 延迟拒绝自适应Metropolis算法 拉丁立方抽样 多目标优化模型
在线阅读 下载PDF
地下水污染监测井优化设计及污染源识别 被引量:9
8
作者 张双圣 刘汉湖 +2 位作者 强静 刘喜坤 朱雪强 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第6期120-132,共13页
在地下水污染源识别过程中,针对监测井监测值信息量不充分或监测值与模型参数关联性较弱的问题,提出一种基于贝叶斯公式与信息熵的监测井优化方法.构建二维地下水溶质运移模型,并运用GMS软件进行数值求解.为减少监测井优化设计及污染源... 在地下水污染源识别过程中,针对监测井监测值信息量不充分或监测值与模型参数关联性较弱的问题,提出一种基于贝叶斯公式与信息熵的监测井优化方法.构建二维地下水溶质运移模型,并运用GMS软件进行数值求解.为减少监测井优化设计及污染源识别过程中反复调用数值模型的计算负荷,采用克里金法建立数值模型的替代模型.以信息熵作为优化指标,筛选出不同监测类型的最优监测方案,并以监测成本和反演精度为参考因素,选定相应监测方案,最后运用差分进化自适应Metropolis算法进行污染源识别.算例研究表明:7口监测井的克里金替代模型的决定系数均大于0.98,可较好地替代原数值模型.基于监测成本最小的方案1(3号单井),其信息熵为12.772;兼顾监测成本和反演精度的方案2(井(2,3)组合),其信息熵为9.723;基于反演精度较高的方案3(3井(2,3,5)组合),其信息熵为9.377.方案1到方案3参数后验分布范围及标准差均逐渐减小,验证了信息熵是参数后验分布不确定性的有效量度. 展开更多
关键词 监测井优化 污染源识别 贝叶斯方法 信息熵 最优拉丁立方抽样 差分进化自适应Metropolis算法 克里金
在线阅读 下载PDF
基于GA-BO-LSTM的电解电容剩余寿命预测
9
作者 刘心怡 李小波 史尚贤 《现代电子技术》 北大核心 2025年第20期81-86,共6页
单个产品的剩余寿命预测对系统稳定可靠工作具有重要意义。为了提高电解电容剩余寿命预测的准确性,解决因预测精度偏低导致的系统突发故障问题,提出一种结合遗传算法(GA)与贝叶斯优化(BO)来确定长短期记忆(LSTM)网络超参数的寿命预测方... 单个产品的剩余寿命预测对系统稳定可靠工作具有重要意义。为了提高电解电容剩余寿命预测的准确性,解决因预测精度偏低导致的系统突发故障问题,提出一种结合遗传算法(GA)与贝叶斯优化(BO)来确定长短期记忆(LSTM)网络超参数的寿命预测方法。首先,使用Hermite插值法对数据进行预处理;接着,分别利用GA和BO对LSTM模型中的初始学习率、L2正则化系数及隐含层细胞数3个超参数进行全局寻优;然后,将所得的2组超参数中代表相同含义的参数分别作为边界值,构建一种新的参数调优区间,并通过拉丁超立方抽样(LHS)法进行分层抽样,结合均方根误差和平均绝对误差确定最优层数为6层;最后,基于美国航空航天局(NASA)的电解电容加速退化实验数据进行算法验证。结果表明,所提算法的误差相较于LSTM、GA-LSTM、BO-LSTM至少降低了38.57%,具有更高的预测精度。 展开更多
关键词 剩余寿命预测 遗传算法 贝叶斯优化 长短期记忆网络 参数优化 调优区间 分层抽样
在线阅读 下载PDF
基于IEWT-FE-BO-LSTM模型的超短期风功率预测 被引量:10
10
作者 陆秋贤 马刚 涂孟夫 《水电能源科学》 北大核心 2023年第1期217-220,共4页
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立... 为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。 展开更多
关键词 短期风功率预测 改进经验小波分解 模糊熵 贝叶斯优化算法
在线阅读 下载PDF
基于贝叶斯正则化神经网络的卡车轮罩横梁注塑工艺多目标优化
11
作者 张晗 王明伟 +3 位作者 蔡世铭 王宗强 于峻伟 叶星辉 《工程塑料应用》 2025年第10期95-103,共9页
以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本... 以大型塑件卡车轮罩横梁的体积收缩率(Y1)和Z方向(装配方向)最大翘曲变形量(Y2)为响应目标,选取熔体温度、模具温度、第一段保压时间、第二段保压时间、第一段保压压力、第二段保压压力为试验变量,通过最优拉丁超立方试验设计100组样本,利用Moldex3D模流分析软件进行模拟。利用贝叶斯正则化神经网络(BRNN)建立Y1和Y2的回归预测模型,这两个模型的决定系数(R^(2))分别为0.991和0.989;通过非支配排序遗传算法II(NSGA-II)对模型进行多目标优化,得到最优试验变量参数。将最优试验变量参数在Moldex3D中进行模拟和现场实际应用,发现对于Y1和Y2,模拟结果与BRNN-NSGA-II预测的最优结果之间的误差分别为0.14%和7.28%,与初始模拟结果相比分别降低了3.16%和64.42%;实际塑件成型质量良好,满足生产要求。上述结果表明提出的BRNN结合NSGA-II的方法可有效解决大型复杂塑件的注塑工艺多目标优化问题。 展开更多
关键词 注塑 多目标优化 卡车轮罩横梁 最优拉丁立方试验 贝叶斯正则化神经网络 非支配排序遗传算法II(NSGA-II)
在线阅读 下载PDF
基于BOHB-BP的增材制造成型件质量预测方法 被引量:7
12
作者 徐旺莉 史廷春 +1 位作者 陈鸿宇 岳秀艳 《计算机集成制造系统》 EI CSCD 北大核心 2023年第8期2733-2742,共10页
表面粗糙度和拉伸强度是衡量熔融沉积制造(FDM)成型件质量的重要指标,但由于FDM工艺参数众多,且与FDM成型件质量之间呈现非线性关系,因此传统方法难以准确预测这两项指标。为此,提出一种贝叶斯超频道优化算法(BOHB)与BP神经网络相结合的... 表面粗糙度和拉伸强度是衡量熔融沉积制造(FDM)成型件质量的重要指标,但由于FDM工艺参数众多,且与FDM成型件质量之间呈现非线性关系,因此传统方法难以准确预测这两项指标。为此,提出一种贝叶斯超频道优化算法(BOHB)与BP神经网络相结合的FDM 3D打印成型件质量预测方法以提高预测精度与稳定性。将层厚、扫描次数和填充间隔这三个工艺参数作为模型的输入;利用BOHB算法对BP神经网络的超参数进行优化得到BOHB-BP模型;使用中心复合实验获取表面粗糙度和拉伸强度的实验数据,在以上两种数据集上根据留一法验证模型的精度与稳定性;将模型BOHB-BP与模型GA-BP和BP的预测情况进行对比实验,证明了所提方法在不同数据集上均有更好的预测精度与稳定性。 展开更多
关键词 熔融沉积制造 质量预测 贝叶斯超频道优化算法 留一法 BP神经网络
在线阅读 下载PDF
基于PCA-BO-XGBoost的矿井回采工作面瓦斯涌出量预测 被引量:19
13
作者 王媛彬 李媛媛 +2 位作者 韩骞 李瑜杰 周冲 《西安科技大学学报》 CAS 北大核心 2022年第2期371-379,共9页
针对矿井回采工作面瓦斯涌出量预测精度欠佳的问题,建立基于极端梯度提升(XGBoost)瓦斯涌出量预测模型。首先,为解决瓦斯涌出量影响因素维数高和信息冗余等问题,在预测模型中引入主成分分析法(PCA)对11种影响因素降维。其次,通过贝叶斯... 针对矿井回采工作面瓦斯涌出量预测精度欠佳的问题,建立基于极端梯度提升(XGBoost)瓦斯涌出量预测模型。首先,为解决瓦斯涌出量影响因素维数高和信息冗余等问题,在预测模型中引入主成分分析法(PCA)对11种影响因素降维。其次,通过贝叶斯优化算法(BOA)对XGBoost中超参数进行优化以提高预测模型的精度。最后,将训练集数据作为预测模型的输入进行训练,利用训练好的模型对测试集数据进行验证,并与传统的BP神经网络和支持向量机进行对比。结果表明:PCA-BO-XGBoost模型的平均绝对误差为0.0703,均方根误差为0.0957,能够满足对瓦斯涌出量预测的精度要求。与其他机器学习算法相比,建立的模型预测精度更高、耗时更短、效率均更高,对煤矿井回采工作面瓦斯涌出量的预测精度和效率提升具有借鉴作用。 展开更多
关键词 瓦斯涌出量预测 XGBoost算法 主成分分析法 贝叶斯优化 参数
在线阅读 下载PDF
基于词嵌入与卷积神经网络的建筑能耗预测 被引量:10
14
作者 季天瑶 王挺韶 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期40-48,共9页
在对建筑能耗进行回归预测时需要利用到时序特征与分类特征,而传统模型只能处理其中一种特征。针对该问题,文中提出了一种融合一维卷积与词嵌入的神经网络新构架,其中,一维卷积核能提取连续的时间序列特征,词嵌入模型能对离散的分类特... 在对建筑能耗进行回归预测时需要利用到时序特征与分类特征,而传统模型只能处理其中一种特征。针对该问题,文中提出了一种融合一维卷积与词嵌入的神经网络新构架,其中,一维卷积核能提取连续的时间序列特征,词嵌入模型能对离散的分类特征进行嵌入计算,从而建立能同时处理时序特征与分类特征的建筑能耗预测模型。通过与梯度提升决策回归树和长短时记忆网络的比较,证明所提出的模型在效率与准确率上都有良好的表现。在超参数调节上,采用基于贝叶斯优化的超参数自动优化算法,该算法能在树搜索空间上寻找最优超参数,相比于人工调参,超参数自动寻优算法能在较快的时间内提升模型本身的性能。最后进行了算例仿真,结果表明,文中提出的模型在性能上要优于集成学习模型与长短时记忆网络。 展开更多
关键词 建筑能耗预测 一维卷积网络 词嵌入模型 梯度提升决策回归树 长短时记忆网络 贝叶斯优化 参数自动优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部