基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先...基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。展开更多
针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶...针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点.展开更多
文摘基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。
文摘针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点.