期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
1
作者
朱仁杰
宋恩哲
+1 位作者
姚崇
柯赟
《中国舰船研究》
北大核心
2025年第2期20-29,共10页
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电...
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电机故障信号分解为多个本征模态函数(IMF)分量,并基于去趋势波动分析(DFA)划分IMF中噪声和信息的主导信号,对于噪声主导信号使用经验小波变化(EWT)予以降噪;然后,构建BRECAN网络,基于变分贝叶斯理论,使用网络参数代替传统网络点估计的训练方式,使用参数建模,拟合噪声对模型训练的干扰,并通过残差高效通道注意力(RECA)模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。[结果]结果表明,所提方法在强噪声下能够实现船舶电机故障的精确诊断,在信噪比为-12dB的条件下仍能保持90%以上的诊断精度。[结论]研究成果可为强噪声下船舶电机故障诊断提供参考。
展开更多
关键词
电动机
故障分析
故障诊断
人工智能
完全集合经验模态分解(CEEMDAN)
贝叶斯
残差
高效
通道
注意力
网络
(
brecan
)
在线阅读
下载PDF
职称材料
矿井图像超分辨率重建研究
被引量:
1
2
作者
王媛彬
刘佳
+1 位作者
郭亚茹
吴冰超
《工矿自动化》
CSCD
北大核心
2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。...
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。
展开更多
关键词
矿井图像
超分辨率重建
超分辨率生成对抗
网络
多尺度密集
通道
注意力
残差
块
高效
通道
注意力
模块
深度可分离卷积
纹理损失
在线阅读
下载PDF
职称材料
题名
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
1
作者
朱仁杰
宋恩哲
姚崇
柯赟
机构
哈尔滨工程大学动力与能源工程学院
哈尔滨工程大学烟台研究院
出处
《中国舰船研究》
北大核心
2025年第2期20-29,共10页
基金
山东省自然科学基金资助项目(ZR2023QE009)
中央高校基本科研业务费专项资金资助项目(3072024XX2709)
内燃机与动力系统全国重点实验室开放课题(skler-2023-011)。
文摘
[目的]针对船舶航行中机舱背景噪声导致故障诊断方法在实际使用时精度差的问题,提出一种基于自适应噪声的完备经验模态分解(CEEMDAN)和贝叶斯残差高效通道注意力网络(BRECAN)的船舶电机故障诊断方法。[方法]首先,通过CEEMDAN将含噪声电机故障信号分解为多个本征模态函数(IMF)分量,并基于去趋势波动分析(DFA)划分IMF中噪声和信息的主导信号,对于噪声主导信号使用经验小波变化(EWT)予以降噪;然后,构建BRECAN网络,基于变分贝叶斯理论,使用网络参数代替传统网络点估计的训练方式,使用参数建模,拟合噪声对模型训练的干扰,并通过残差高效通道注意力(RECA)模块引导网络提取故障差异特征;最后,通过电机故障模拟实验台,验证所提方法的有效性。[结果]结果表明,所提方法在强噪声下能够实现船舶电机故障的精确诊断,在信噪比为-12dB的条件下仍能保持90%以上的诊断精度。[结论]研究成果可为强噪声下船舶电机故障诊断提供参考。
关键词
电动机
故障分析
故障诊断
人工智能
完全集合经验模态分解(CEEMDAN)
贝叶斯
残差
高效
通道
注意力
网络
(
brecan
)
Keywords
electric motors
failure analysis
fault diagnosis
artificial intelligence
complementary ensemble empirical mode decomposition with adaptive noise
Bayesian residual efficient channel attention network
分类号
U672.7 [交通运输工程—船舶及航道工程]
U664.14 [交通运输工程—船舶及航道工程]
在线阅读
下载PDF
职称材料
题名
矿井图像超分辨率重建研究
被引量:
1
2
作者
王媛彬
刘佳
郭亚茹
吴冰超
机构
西安科技大学电气与控制工程学院
西安市电气设备状态监测与供电安全重点实验室
出处
《工矿自动化》
CSCD
北大核心
2023年第11期76-83,120,共9页
基金
国家自然科学基金资助项目(52174198)
陕西省重点研发计划项目(2023YBSF-133)。
文摘
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。
关键词
矿井图像
超分辨率重建
超分辨率生成对抗
网络
多尺度密集
通道
注意力
残差
块
高效
通道
注意力
模块
深度可分离卷积
纹理损失
Keywords
mine image
super resolution reconstruction
super-resolution generative adversarial network
multi scale dense channel attention residual blocks
efficient channel attention module
depthwise separable convolution
texture loss
分类号
TD67 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
强噪声背景下基于CEEMDAN与BRECAN的船舶电机故障诊断
朱仁杰
宋恩哲
姚崇
柯赟
《中国舰船研究》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
矿井图像超分辨率重建研究
王媛彬
刘佳
郭亚茹
吴冰超
《工矿自动化》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部