基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型...基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型。通过CRPS、MAE、BS三种评价指标,对大渡河流域的BMA降水概率预报模型进行评价与检验,三种指标均显示BMA降水概率预报比原始集合预报具有更高的准确性,其中BMA模型的CRPS和MAE指标均值分别相比原始集合预报减少了31.6%和23.9%;分析模型权重参数,得出ECMWF对大渡河流域BMA降水预报贡献最大,即ECMWF对研究区域降水预报效果最好;模型对大渡河流域极端降水预报效果较差,常低估极端降水量。展开更多
基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用...基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用2002年2月—2015年10月美国哥伦比亚大学国际气候与社会研究所(IRI)提供的7个单一模式对NINO3.4指数的预报结果进行OBJ试验,并采用均方根误差对多模式集合平均预报(简称ENS)和OBJ的预报结果进行检验和评估。结果表明,ENS的预报效果优于7个单一模式的预报效果,而OBJ预报效果优于ENS预报效果,其NINO3.4指数的均方根误差比ENS方法降低了4%。将单一模式预报结果按时间划分为训练期和预报期,利用独立样本估计OBJ的参数并进行预报试验,这些试验也表明,OBJ能进一步提高预报精度。展开更多
利用TIGGE资料中的ECMWF、NCEP、UKMO三个中心集合预报系统以及由此构成的多中心集合预报系统所提供的地面2 m气温10~15 d延伸期集合预报产品,建立贝叶斯模式平均(Bayesian Model Averaging,BMA)概率预报模型,对东亚地区冬季地面气温进...利用TIGGE资料中的ECMWF、NCEP、UKMO三个中心集合预报系统以及由此构成的多中心集合预报系统所提供的地面2 m气温10~15 d延伸期集合预报产品,建立贝叶斯模式平均(Bayesian Model Averaging,BMA)概率预报模型,对东亚地区冬季地面气温进行延伸期概率预报研究。采用距平相关系数、均方根误差、布莱尔评分、等级概率评分等指标分别对BMA确定性结果与概率预报进行评估。结果表明,BMA方法明显地改进了原始集合预报结果,预报技巧优于原始集合预报,且多中心BMA预报优于单中心BMA预报,最佳滑动训练期取35 d。BMA预报为气温的延伸期概率预报提供了更合理的概率分布,定量描述了预报的不确定性。展开更多
文摘基于TIGGE数据的五个单中心集合预报结果(CMA、CMC、ECMWF、NCEP、UKMO)构成的多中心超级集合预报系统的降水量预报,以及相应时段的实测降水量值,应用贝叶斯模式平均法(Bayesian Model Averaging,BMA)建立大渡河流域的BMA概率预报模型。通过CRPS、MAE、BS三种评价指标,对大渡河流域的BMA降水概率预报模型进行评价与检验,三种指标均显示BMA降水概率预报比原始集合预报具有更高的准确性,其中BMA模型的CRPS和MAE指标均值分别相比原始集合预报减少了31.6%和23.9%;分析模型权重参数,得出ECMWF对大渡河流域BMA降水预报贡献最大,即ECMWF对研究区域降水预报效果最好;模型对大渡河流域极端降水预报效果较差,常低估极端降水量。
文摘基于贝叶斯模式平均方法(Bayesian Model Averaging),发展了一个NINO3.4指数的多模式客观权重集合预报方法(简称OBJ)。该方法基于训练期内单个模式的预报结果,用线性回归订正单个预报的偏差,依据模式的预报效果估计单个模式的权重。利用2002年2月—2015年10月美国哥伦比亚大学国际气候与社会研究所(IRI)提供的7个单一模式对NINO3.4指数的预报结果进行OBJ试验,并采用均方根误差对多模式集合平均预报(简称ENS)和OBJ的预报结果进行检验和评估。结果表明,ENS的预报效果优于7个单一模式的预报效果,而OBJ预报效果优于ENS预报效果,其NINO3.4指数的均方根误差比ENS方法降低了4%。将单一模式预报结果按时间划分为训练期和预报期,利用独立样本估计OBJ的参数并进行预报试验,这些试验也表明,OBJ能进一步提高预报精度。