贝叶斯最大熵(Bayesian Maximum Entropy,BME)地统计学方法是近年来出现的一种时空地统计学新方法。相对于传统的克里金方法,该法具有坚实的认识论框架和方法学基础。它不需要作线性估值、空间匀质和正态分布的假设,能够融入先验知识和...贝叶斯最大熵(Bayesian Maximum Entropy,BME)地统计学方法是近年来出现的一种时空地统计学新方法。相对于传统的克里金方法,该法具有坚实的认识论框架和方法学基础。它不需要作线性估值、空间匀质和正态分布的假设,能够融入先验知识和软数据,并且不会损失其中蕴含的有用信息,提高了分析精度。本文首先介绍了BME的基本理论及其估值方法,随后简单描述了该方法的理论发展过程及其在土壤和环境科学上的应用情况,最后对该方法的应用做了总结与展望。经过国外研究者多年的开发和实践,BME方法已经被证明是一个理论上较为成熟,能够应用到实际研究中的优秀地统计学方法,在资源环境评估上有着广泛的应用前景。展开更多
预测土壤重金属空间分布对于识别高污染区域、进行污染来源解析和制定预防控制策略具有重要意义。本文选取浙江省杭州市为研究区,以土壤母质类型作为辅助信息,通过贝叶斯最大熵(Bayesian maximum entropy,BME)法,预测土壤重金属的空间分...预测土壤重金属空间分布对于识别高污染区域、进行污染来源解析和制定预防控制策略具有重要意义。本文选取浙江省杭州市为研究区,以土壤母质类型作为辅助信息,通过贝叶斯最大熵(Bayesian maximum entropy,BME)法,预测土壤重金属的空间分布,并与传统的克里金方法的预测结果进行比较。结果表明:BME在土壤重金属含量空间预测方面精度更高,其残差分布区间、平均绝对误差和均方根误差更小。研究区内重金属污染风险相对较低,其平均值均低于二级土壤环境质量标准值,但镉和砷的含量高于当地背景值,分别是背景值的1.59倍和1.31倍。铅和汞在该研究区东北部的城市地区含量较高,城市化、工业化和交通运输可能是其污染来源;镉和砷在西南部和中西部农村地区含量较高,农业活动可能是其污染来源。此外,镉在中东部还存在一块明显的高含量区域,这与当地矿业活动密切相关。铬主要受自然因素的影响。展开更多
贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的...贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的空间估计和分析制图过程中。本文首先结构化梳理贝叶斯最大熵方法的原理,对理论较深奥、公式较复杂的贝叶斯最大熵方法及该方法的特点加以概括,同时归纳与总结贝叶斯最大熵方法在地球科学领域内多个方向的应用研究进展,最后对该方法及其应用作总结与展望。经国内外学者多年的研究和实践,贝叶斯最大熵方法已被证明在地球科学领域有着更广阔的应用前景。展开更多
文摘贝叶斯最大熵(Bayesian Maximum Entropy,BME)地统计学方法是近年来出现的一种时空地统计学新方法。相对于传统的克里金方法,该法具有坚实的认识论框架和方法学基础。它不需要作线性估值、空间匀质和正态分布的假设,能够融入先验知识和软数据,并且不会损失其中蕴含的有用信息,提高了分析精度。本文首先介绍了BME的基本理论及其估值方法,随后简单描述了该方法的理论发展过程及其在土壤和环境科学上的应用情况,最后对该方法的应用做了总结与展望。经过国外研究者多年的开发和实践,BME方法已经被证明是一个理论上较为成熟,能够应用到实际研究中的优秀地统计学方法,在资源环境评估上有着广泛的应用前景。
文摘预测土壤重金属空间分布对于识别高污染区域、进行污染来源解析和制定预防控制策略具有重要意义。本文选取浙江省杭州市为研究区,以土壤母质类型作为辅助信息,通过贝叶斯最大熵(Bayesian maximum entropy,BME)法,预测土壤重金属的空间分布,并与传统的克里金方法的预测结果进行比较。结果表明:BME在土壤重金属含量空间预测方面精度更高,其残差分布区间、平均绝对误差和均方根误差更小。研究区内重金属污染风险相对较低,其平均值均低于二级土壤环境质量标准值,但镉和砷的含量高于当地背景值,分别是背景值的1.59倍和1.31倍。铅和汞在该研究区东北部的城市地区含量较高,城市化、工业化和交通运输可能是其污染来源;镉和砷在西南部和中西部农村地区含量较高,农业活动可能是其污染来源。此外,镉在中东部还存在一块明显的高含量区域,这与当地矿业活动密切相关。铬主要受自然因素的影响。
文摘贝叶斯最大熵方法(bayesian maximum entropy,简称BME)是现代时空地统计学的重要组成部分。该方法采用统计学中的贝叶斯理论和信息论中熵的概念来认识和处理时空变量,可以将所研究时空要素的软数据和硬数据系统合理地综合到对该要素的空间估计和分析制图过程中。本文首先结构化梳理贝叶斯最大熵方法的原理,对理论较深奥、公式较复杂的贝叶斯最大熵方法及该方法的特点加以概括,同时归纳与总结贝叶斯最大熵方法在地球科学领域内多个方向的应用研究进展,最后对该方法及其应用作总结与展望。经国内外学者多年的研究和实践,贝叶斯最大熵方法已被证明在地球科学领域有着更广阔的应用前景。