期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯方法与可解释机器学习的负荷特性分析与预测 被引量:18
1
作者 郑心仕 梁寿愚 +2 位作者 苏晓 王浩 程国鑫 《电力系统自动化》 EI CSCD 北大核心 2023年第13期56-68,共13页
使用机器学习模型和方法进行短期负荷预测,虽能提升负荷预测的整体精度,但在极端天气、节假日等小样本预测场景中,对比基于专家经验的人工预测无明显优势。为充分结合预测业务人员的经验知识与机器学习的推理泛化能力,提出了一种基于贝... 使用机器学习模型和方法进行短期负荷预测,虽能提升负荷预测的整体精度,但在极端天气、节假日等小样本预测场景中,对比基于专家经验的人工预测无明显优势。为充分结合预测业务人员的经验知识与机器学习的推理泛化能力,提出了一种基于贝叶斯时变系数(BTVC)与CatBoost模型的可解释负荷预测框架。首先,结合数据与专家知识,构建BTVC模型进行预测,获得各影响因子、趋势及周期因素的负荷分量。其次,将上述结果与常规特征进行组合,作为CatBoost回归模型的输入,进行最终预测。然后,使用事后模型解释框架(SHAP)进行归因分析,框架输出的定量关系可供负荷预测业务人员参考,使其开发出更有效的特征,进一步提高预测效果。最后,以某地区实际电网负荷数据为例,验证所提负荷预测与结果分析框架的有效性。 展开更多
关键词 短期负荷预测 负荷特性分析 贝叶斯时序模型 可解释机器学习 集成学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部