期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
松辽流域水资源保护监控体系建设实践 被引量:3
1
作者 郑国臣 李青山 范晓娜 《水资源保护》 CAS CSCD 2016年第4期45-48,54,共5页
分析松辽流域水资源保护模式的特点,梳理松辽流域水资源保护基础建设、新技术的应用和水资源保护管理机制的建立等水资源保护监控实践经验。松辽流域从水资源监测能力、信息系统、水生态文明方面加强水资源保护基础建设,利用"3S&qu... 分析松辽流域水资源保护模式的特点,梳理松辽流域水资源保护基础建设、新技术的应用和水资源保护管理机制的建立等水资源保护监控实践经验。松辽流域从水资源监测能力、信息系统、水生态文明方面加强水资源保护基础建设,利用"3S"技术、贝叶斯技术、松花江干流水质模型对松辽流域重点水功能区、省界缓冲区和入河排污口加强水质监测与管理,并建立良好的水资源保护管理机制。 展开更多
关键词 松辽流域 水资源保护 “3S”技术 贝叶斯技术 松花江干流水质模型
在线阅读 下载PDF
应用3种遗传分析方法分析养殖鲤与天然群体的遗传差异 被引量:3
2
作者 许丽花 李巍 +2 位作者 吴春琳 董在杰 王成辉 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2012年第4期393-399,共7页
应用基于分子标记的主成分分析法、贝叶斯遗传聚类法和遗传重排技术对鲤4个人工选育群体(兴国红鲤、荷包红鲤、玻璃红鲤和建鲤)和2个长江干流天然群体(湖北监利和江苏扬州)的10个微卫星标记结果进行分析,以有效检测人工选育群体间以及... 应用基于分子标记的主成分分析法、贝叶斯遗传聚类法和遗传重排技术对鲤4个人工选育群体(兴国红鲤、荷包红鲤、玻璃红鲤和建鲤)和2个长江干流天然群体(湖北监利和江苏扬州)的10个微卫星标记结果进行分析,以有效检测人工选育群体间以及选育群体与天然群体间的遗传差异。主成分分析显示,人工选育群体与天然群体存在一定程度的遗传分化,荷包红鲤与天然群体的遗传差异最大,其主成分1(PC1)和主成分2(PC2)解释了总遗传变异的48.23%;在贝叶斯遗传聚类分析中,6个群体的最佳聚类数值为4,即兴国红鲤与2个天然群体聚为一类,玻璃红鲤、荷包红鲤和建鲤3个群体分别单独聚为一类;贝叶斯遗传重排分析显示,6个群体的遗传自排率较高,为81%~100%,玻璃红鲤和荷包红鲤的遗传自排率最高,均为100%。研究结果综合表明:4个人工选育群体与天然群体间存在较明显的遗传差异,而且天然群体已受到人工选育群体的遗传影响;这3种方法能很好地检测鲤人工选育群体间、以及选育群体与天然群体间的遗传差异。 展开更多
关键词 微卫星标记 主成分分析 贝叶斯遗传聚类分析 贝叶斯遗传重排技术
在线阅读 下载PDF
改进CREAM模型的船舶引航员人因可靠性预测 被引量:6
3
作者 张爱琳 刘晓佳 《中国航海》 CSCD 北大核心 2021年第1期32-37,43,共7页
为有效预测船舶引航员人因可靠性,以认知可靠性与失误分析方法(Cognitive Reliability and Error Analysis Method,CREAM)为基础,将模糊数引入通用行为条件(Common Performance Condition,CPC)绩效效应评价中,将先验条件概率从确定值转... 为有效预测船舶引航员人因可靠性,以认知可靠性与失误分析方法(Cognitive Reliability and Error Analysis Method,CREAM)为基础,将模糊数引入通用行为条件(Common Performance Condition,CPC)绩效效应评价中,将先验条件概率从确定值转变为概率值,降低专家判断的主观因素对评价结果的影响。基于贝叶斯网络技术建立改进CREAM模型,确定控制模式并计算出人因差错率(Human Error Probability,HEP),根据结果分析出实际情景环境下引航员的人因可靠性。结果表明:改进的CREAM模型能获得特定情景环境下引航员HEP的精确值,相比CREAM基本法有更好的可靠性和敏感性,可为船舶引航员人因可靠性分析提供定量评估数据。 展开更多
关键词 人因可靠性 CREAM基本法 贝叶斯网络技术 船舶引航员
在线阅读 下载PDF
Landslide hazards mapping using uncertain Na?ve Bayesian classification method 被引量:5
4
作者 毛伊敏 张茂省 +1 位作者 王根龙 孙萍萍 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3512-3520,共9页
Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification techniq... Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naive Bayesian classification method in Baota district of Yan'an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naive Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves(AUC) in NBU and Naive Bayesian algorithm are 87.29% and 82.47% respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique. 展开更多
关键词 uncertain Bayesian model LANDSLIDE hazard assessment
在线阅读 下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
5
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部