期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于LZW算法和贝叶斯MARS的入侵检测研究 被引量:2
1
作者 李智慧 王晴 +1 位作者 邵春艳 张束 《计算机工程与应用》 CSCD 2012年第6期86-89,109,共5页
提出了一种基于LZW算法的入侵检测算法。使用系统调用序列作为特征数据,采用LZW算法对系统调用序列数据进行变长短序列划分,同时对短序列进行压缩,并在应用的过程中对LZW算法进行适当调整以适应序列的划分。通过贝叶斯多元自适应回归样... 提出了一种基于LZW算法的入侵检测算法。使用系统调用序列作为特征数据,采用LZW算法对系统调用序列数据进行变长短序列划分,同时对短序列进行压缩,并在应用的过程中对LZW算法进行适当调整以适应序列的划分。通过贝叶斯多元自适应回归样条(贝叶斯MARS)模型,对正常和异常序列进行分类并标识入侵。实验结果表明,基于LZW变长序列划分方法符合系统调用序列的内在规律,在较高压缩比的情况下,获得了很好的检测性能。LZW算法与贝叶斯MARS相结合的入侵检测算法,对各种数据表现稳定,具有一定可行性和实用性。 展开更多
关键词 入侵检测 系统调用 LZW算法 变长序列划分 贝叶斯多元自适应回归样条(贝叶斯mars)
在线阅读 下载PDF
基于MARS的岩石抗拉强度预测模型 被引量:1
2
作者 徐国权 王鑫瑀 《长江科学院院报》 CSCD 北大核心 2024年第2期135-141,共7页
将无损检测技术与机器学习相结合,通过建立预测模型来快速确定岩石抗拉强度已经成为热门研究方向之一。为了建立预测模型,提出一种基于多元自适应回归样条(MARS)的数据驱动建模技术,用于岩石抗拉强度预测。共收集了80组试验数据,包括施... 将无损检测技术与机器学习相结合,通过建立预测模型来快速确定岩石抗拉强度已经成为热门研究方向之一。为了建立预测模型,提出一种基于多元自适应回归样条(MARS)的数据驱动建模技术,用于岩石抗拉强度预测。共收集了80组试验数据,包括施密特回弹数、干密度、点荷载强度指数以及巴西抗拉强度。所有数据被随机分为2个部分,其中70%的数据用于训练模型,剩余30%的数据用于测试模型性能。同时开发了人工神经网络、支持向量机和决策树3种数据驱动模型。选择了4种常用的模型性能评价指标,分别为均方根误差、平均绝对误差、相关系数和决定系数,以此来对所开发模型的预测性能进行比较。结果表明:所开发的智能模型均能够提供较高的预测精度,其中MARS模型性能优于其他3种模型,支持向量机和人工神经网络模型次之,决策树模型相对较差。值得一提的是,MARS模型能够通过方差分析来评估每个变量的相对重要性。研究成果有助于快速确定岩石抗拉强度。 展开更多
关键词 岩石力学 抗拉强度 多元自适应回归样条(mars) 机器学习 预测模型
在线阅读 下载PDF
基于MARS的语音清晰度客观评价 被引量:3
3
作者 沈刘平 杨吉斌 +2 位作者 曹铁勇 张雄伟 孙新建 《数据采集与处理》 CSCD 北大核心 2008年第1期100-103,共4页
提出了基于多元自适应回归样条法(Multivariate adaptive regression spline,MARS)的语音清晰度客观评价方法。该方法提取语音信号的Mel倒谱系数作为评估语音清晰度的候选特征参数。在Mel倒谱系数的失真距离基础上,利用MARS方法选出对... 提出了基于多元自适应回归样条法(Multivariate adaptive regression spline,MARS)的语音清晰度客观评价方法。该方法提取语音信号的Mel倒谱系数作为评估语音清晰度的候选特征参数。在Mel倒谱系数的失真距离基础上,利用MARS方法选出对语音清晰度影响较大的特征参数,并结合主观DRT分建立最佳客观预测模型,实现特征参数失真距离到客观DR∧T分的映射。仿真结果表明,分别采用训练集合样本和测试集合样本进行测试时,使用该方法评价的客观DR∧T分与主观DRT分的相关度,分别达到0.958和0.9102。 展开更多
关键词 语音清晰度 客观评价 多元自适应回归样条法(mars) MEL倒谱系数
在线阅读 下载PDF
基于MARS和概率规划的离群值检测算法
4
作者 王瑞豪 童英华 冯忠岭 《计算机工程与设计》 北大核心 2023年第9期2694-2699,共6页
为提高物联网数据质量,提出一种基于MARS模型和概率规划的多变量离群值检测方法。该方法能够将多个变量结合起来,通过一个模型检测离群值。创建一个多元自适应回归样条模型产生研究化的残差,将残差作为输入,采用概率规划方法,建立基于... 为提高物联网数据质量,提出一种基于MARS模型和概率规划的多变量离群值检测方法。该方法能够将多个变量结合起来,通过一个模型检测离群值。创建一个多元自适应回归样条模型产生研究化的残差,将残差作为输入,采用概率规划方法,建立基于全贝叶斯推理的一般单变量离群点检测模型。实验结果表明,概率规划模型能检测出更准确的离群点,该模型提供了具有可信区间的概率分布。 展开更多
关键词 物联网 数据质量 多元自适应回归模型 离群值 概率规划 多元离群点检测 贝叶斯
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部