期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合贝叶斯优化随机森林的机场旅客风险评估研究 被引量:3
1
作者 赵振武 李雪琴 贾朋霖 《安全与环境学报》 CAS CSCD 北大核心 2024年第9期3487-3495,共9页
为科学有效地评价旅客风险,提高旅客出行便捷性,以机场离港旅客为研究对象,借助旅客姓名记录获取评价旅客风险的相关信息,结合旅客安检信息,编制问卷进行调查。运用SPSS 22.0软件对有效问卷数据进行合理性检验,构建民航旅客风险评价指... 为科学有效地评价旅客风险,提高旅客出行便捷性,以机场离港旅客为研究对象,借助旅客姓名记录获取评价旅客风险的相关信息,结合旅客安检信息,编制问卷进行调查。运用SPSS 22.0软件对有效问卷数据进行合理性检验,构建民航旅客风险评价指标体系;在此基础上,利用贝叶斯优化随机森林模型对旅客风险等级进行综合评价。结果表明:在影响旅客风险等级划分的8个指标中,年飞行次数和托运行李违禁品记录重要性最大,性别重要性最小;相较于多种传统的算法,贝叶斯优化随机森林的分类性能更高,准确率达到97%。研究结果对机场实施旅客分类安检具有一定的指导作用。 展开更多
关键词 安全社会工程 旅客风险 贝叶斯优化随机森林(BO-RF) 风险等级
在线阅读 下载PDF
基于贝叶斯优化随机森林的高速公路二次事故预测研究 被引量:8
2
作者 孟庆森 韩皓 李易 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第7期205-210,共6页
为准确预测高速公路二次事故,最大程度地降低事故危害,采用时空阈值分析法分别研究时间间隔阈值及空间间隔阈值对高速公路二次事故数据识别的影响,通过参考现有资料并结合本文阈值分析,将时间间隔阈值和空间间隔阈值设定为30 min、1 km... 为准确预测高速公路二次事故,最大程度地降低事故危害,采用时空阈值分析法分别研究时间间隔阈值及空间间隔阈值对高速公路二次事故数据识别的影响,通过参考现有资料并结合本文阈值分析,将时间间隔阈值和空间间隔阈值设定为30 min、1 km,利用该阈值下二次事故数据的识别结果,构建基于贝叶斯优化随机森林的预测模型,并与其他模型的预测效果进行对比。研究结果表明:二次事故数据的识别对空间间隔阈值更加敏感,模型预测准确率达81.4%,优于其它对比模型。研究结果可为高速公路二次事故预测提供借鉴。 展开更多
关键词 交通安全 二次事故 时空阈值法 事故预测 贝叶斯优化随机森林
在线阅读 下载PDF
基于BO-RF回归预测的海水柱塞泵配流阀结构参数优化研究
3
作者 周广金 国凯 +1 位作者 孙杰 黄晓明 《机电工程》 北大核心 2025年第4期618-627,共10页
海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方... 海水柱塞泵采用阀配流方式可以提高其密封性能,保证其具有较高的输出压力。针对配流阀结构参数设计不合理,导致阀芯运动滞后和容积效率降低的问题,提出了一种贝叶斯优化(BO)与随机森林算法(RF)相结合的海水柱塞泵配流阀结构参数优化方法。首先,利用AMESim软件搭建了海水泵液压系统仿真模型,利用试验验证了仿真模型的准确性,分别分析了吸、排液阀的弹簧刚度、弹簧预紧力、阀芯质量对阀芯滞后以及容积效率的影响;然后,基于仿真获得的配流阀结构参数与对应输出流量的数据,对比分析了贝叶斯优化随机森林(BO-RF)模型、粒子群优化随机森林(PSO-RF)模型、反向传播神经网络(BPNN)模型和随机森林(RF)模型的回归预测结果,以BO-RF模型为回归预测模型,利用遗传算法优化了配流阀结构参数,并获得了结构参数最优解;最后,对优化后的配流阀结构参数进行了仿真分析。研究结果表明:吸、排液阀的弹簧刚度、弹簧预紧力增大能够减小阀芯滞后,提高容积效率,参数增大到临界值后,容积效率会随参数增大而降低;吸、排液阀的阀芯质量增大会增大阀芯滞后,减小容积效率;BO-RF模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))均优于RF、PSO-RF和BPNN模型,其回归预测准确度更高;对于优化后的结果进行仿真可得:容积效率较原结构提高了4.7%。该模型适用于配流阀结构参数预测和优化问题,可为提高柱塞泵容积效率提供参考。 展开更多
关键词 三柱塞曲柄连杆式高压海水柱塞泵 容积效率降低 阀芯运动滞后 贝叶斯优化随机森林回归预测模型 粒子群优化随机森林 弹簧刚度和预紧力 阀芯质量
在线阅读 下载PDF
基于GA-PLS-SPA的辣椒叶片叶绿素含量高光谱估测 被引量:5
4
作者 彭俊杰 汪泓 +3 位作者 王宇 肖玖军 李可相 邢丹 《江苏农业科学》 北大核心 2024年第7期184-192,共9页
叶绿素对辣椒的长势评估和营养状况管理具有重要的意义,针对高光谱存在数据量大和冗余度高的问题,探究不同特征选择算法相结合进行高光谱叶绿素含量估测的可行性。以贵州省遵义市栽培辣椒为研究对象,采集盛果期辣椒冠层高光谱数据,通过... 叶绿素对辣椒的长势评估和营养状况管理具有重要的意义,针对高光谱存在数据量大和冗余度高的问题,探究不同特征选择算法相结合进行高光谱叶绿素含量估测的可行性。以贵州省遵义市栽培辣椒为研究对象,采集盛果期辣椒冠层高光谱数据,通过卷积平滑(SG)、一阶微分(FD)、二阶微分(SD)和多元散射校正(MSC)处理原始光谱数据,比较不同预处理方法下的贝叶斯优化随机森林(BO-RF)估测效果,以MSC预处理后的数据为基础,运用遗传偏最小二乘算法结合连续投影算法(GA-PLS-SPA)进行最优特征波段选取,最后以GA-PLS、SPA和GA-PLS-SPA分别选取的特征波段作为输入变量,建立BO-RF、RF和BP神经网络模型来验证GA-PLS-SPA的普适性和广泛性。结果表明,MSC相比其他预处理方法对叶绿素含量的反演效果最好;相同估测模型条件下,基于GA-PLS-SPA建立的估测模型精度最高,选取特征波段数量最少,为7个,GA-PLS-SPA-BO-RF是估测叶绿素含量的最佳模型,训练集的R^(2)、RMSE和RPD分别为0.896、2.791和3.124,测试集的R^(2)、RMSE和RPD分别为0.913、2.965和3.414;相同算法建模条件下,BO-RF的精度明显高于RF和BP神经网络。MSC处理后的光谱能极大程度提取出辣椒叶片的叶绿素信息,GA-PLS-SPA能有效实现特征波段选取,降低模型复杂度,BO-RF具有良好的叶绿素含量反演能力。 展开更多
关键词 辣椒 叶绿素 高光谱波段选择 遗传偏最小二乘算法 连续投影算法 贝叶斯优化随机森林
在线阅读 下载PDF
Thickness of excavation damaged zone estimation using four novel hybrid ensemble learning models : A case study of Xiangxi Gold Mine and Fankou Lead-zinc Mine in China
5
作者 LIU Lei-lei HONG Zhi-xian +1 位作者 ZHAO Guo-yan LIANG Wei-zhang 《Journal of Central South University》 CSCD 2024年第11期3965-3982,共18页
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick... Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting. 展开更多
关键词 excavation damaged zone machine learning simulated annealing Bayesian optimization extreme gradient boosting random forest
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部