期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯超参数优化的BiLSTM模型DGA域名生成方法
1
作者 李博文 乔延臣 +3 位作者 王继刚 陆柯羽 张宇 张伟哲 《信息安全研究》 北大核心 2025年第10期950-959,共10页
近年来,域名生成算法(domain generation algorithm,DGA)在网络攻击中被广泛使用,为恶意软件通信动态生成大量随机域名,给安全防御带来严峻挑战.随着DGA结构日益复杂,传统依赖手动提取特征的域名分类方法难以及时适配新型变种;而基于生... 近年来,域名生成算法(domain generation algorithm,DGA)在网络攻击中被广泛使用,为恶意软件通信动态生成大量随机域名,给安全防御带来严峻挑战.随着DGA结构日益复杂,传统依赖手动提取特征的域名分类方法难以及时适配新型变种;而基于生成的深度模型虽然能从数据分布中自动捕捉潜在规律,却常因参数规模庞大与调参难度高而无法在面对多样化DGA时保持稳定表现.为了应对这一挑战,提出了一种基于贝叶斯超参数优化(Bayesian hyperparameter optimization,Bayesian HPO)的双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)模型的DGA域名生成方法,预测并生成用于僵尸网络中恶意行为的拦截DGA域名黑名单.贝叶斯超参数优化技术通过自动调优关键超参数显著减轻了人工干预与训练成本,并提升了模型对不同DGA的鲁棒性与泛化能力.实验结果表明,该方法在多种DGA域名上均展现了优秀的生成准确率,可以为网络安全提供一种主动、防御前移的新思路. 展开更多
关键词 域名生成算法 双向长短期记忆网络 贝叶斯参数优化 DGA域名生成 网络安全
在线阅读 下载PDF
基于贝叶斯超参数优化的鲜香菇机器视觉图像分级识别 被引量:1
2
作者 张瑞青 贺智斌 +2 位作者 陈文杰 李张威 郝建军 《河北农业大学学报》 CAS CSCD 北大核心 2024年第5期116-123,共8页
针对鲜香菇分级机械化程度低,精度不高等问题,本文提出1种基于贝叶斯超参数优化技术的鲜香菇机器视觉图像识别方法。利用摄像头拍摄鲜香菇图像,按人工分级标准对采样图像进行正反面标记分级,获取并标记了5级的鲜香菇图像,利用仿射变换... 针对鲜香菇分级机械化程度低,精度不高等问题,本文提出1种基于贝叶斯超参数优化技术的鲜香菇机器视觉图像识别方法。利用摄像头拍摄鲜香菇图像,按人工分级标准对采样图像进行正反面标记分级,获取并标记了5级的鲜香菇图像,利用仿射变换和对比度变换的方法对获取的数据集进行扩充,建立各等级鲜香菇图像数据集;基于深度卷积神经网络,对3种预训练网络模型(AlexNet、GoogLeNet、ResNet-18)分别进行迁移学习,3种模型分别记为XGu_Ale、XGu_Goo和XGu_Res-18;使用贝叶斯优化算法对3种模型的香菇正反面数据集进行超参数优化,并分析了各个网络模型的测试结果。分析可知鲜香菇正面图像等级模型以Z-XGu_Res-18模型的识别准确率最高,鲜香菇反面图像等级模型以F-XGu_Res-18模型的识别准确率最高,准确率分别为98.73%和99.15%,选择以上2个模型可满足鲜香菇的分级要求,对正反面识别结果进行加权组合得到鲜香菇分级识别的最终等级。 展开更多
关键词 图像识别 贝叶斯参数优化 鲜香菇分级 迁移学习
在线阅读 下载PDF
基于贝叶斯参数优化的无模型自适应硅单晶直径控制 被引量:3
3
作者 林光伟 王珊 +3 位作者 张西亚 彭鑫 高俊伟 高德东 《人工晶体学报》 CAS 北大核心 2022年第2期229-241,247,共14页
直拉硅单晶的生长过程涉及多场多相耦合与复杂的物理化学变化,其中工艺参数的波动是导致晶体直径不均匀的重要原因,如何实现工艺参数的控制以获得理想的、均匀的晶体直径具有重要的研究意义。本文分析现有控制方法存在不稳定以及控制效... 直拉硅单晶的生长过程涉及多场多相耦合与复杂的物理化学变化,其中工艺参数的波动是导致晶体直径不均匀的重要原因,如何实现工艺参数的控制以获得理想的、均匀的晶体直径具有重要的研究意义。本文分析现有控制方法存在不稳定以及控制效果不佳的问题后,提出基于贝叶斯参数优化的无模型自适应控制模型来控制硅单晶生长过程中的晶体直径。首先以坩埚上升速度与加热器的功率作为控制输入参数,晶体直径作为输出,搭建无模型自适应控制模型,并分析算法的稳定性。其次将控制模型进行仿真实验,发现硅单晶直径控制模型中不同的超参数设定会影响控制过程的迭代次数以及控制效果。最后,利用贝叶斯优化超参数的取值范围,并进行最终的仿真实验,结果表明,经贝叶斯参数优化后的控制模型计算快、迭代次数少,输出的晶体直径稳定,同时将生长工艺参数控制在实际生产要求范围内。因此,基于贝叶斯参数优化的无模型自适应控制实现了硅单晶直径均匀稳定的有效控制,具有结合工程背景的实际应用前景。 展开更多
关键词 硅单晶 直径控制 无模型自适应控制 参数 贝叶斯参数优化
在线阅读 下载PDF
基于贝叶斯算法优化的CatBoost矿压显现预测 被引量:8
4
作者 柴敬 张锐新 +5 位作者 欧阳一博 张丁丁 王润沛 田志诚 刘泓瑞 韩志成 《工矿自动化》 CSCD 北大核心 2023年第7期83-91,共9页
通过传统的监测手段获取矿压数据并采用统计学或机器学习算法对矿压进行预测已不能满足矿山智能化发展要求,需要寻求新的方法提升矿压数据监测及矿压预测的准确性和实时性。基于三维相似物理模型试验,搭建分布式光纤监测系统,沿模型走... 通过传统的监测手段获取矿压数据并采用统计学或机器学习算法对矿压进行预测已不能满足矿山智能化发展要求,需要寻求新的方法提升矿压数据监测及矿压预测的准确性和实时性。基于三维相似物理模型试验,搭建分布式光纤监测系统,沿模型走向和高度2个方向预埋分布式光纤,在模拟工作面开采过程中采集来压数据,并引入光纤布里渊频移平均变化度作为判断是否来压的指标;通过对光纤监测数据进行噪声去除、归一化及相空间重构等预处理,将一维初始监测数据转换为三维数据;使用贝叶斯算法对CatBoost算法进行迭代参数寻优,在达到最大迭代次数后将最优参数组合装载到CatBoost算法中,通过训练得到矿压显现预测模型。结果表明:贝叶斯算法比传统网格搜索法的迭代次数更少、误差更小;与随机森林(RF)、梯度提升决策树(GBDT)和极值梯度提升树(XGBoost)算法相比,CatBoost算法的预测精度更高、泛化能力更强;基于贝叶斯算法优化的CatBoost矿压显现预测模型能准确预测出测试集中的3次来压,且整体预测趋势与实测值较为吻合,平均绝对误差为0.0091,均方根误差为0.0077,决定系数为0.9339。 展开更多
关键词 矿压显现预测 CatBoost 分布式光纤 贝叶斯优化参数 光纤布里渊频移平均变化度 相空间重构
在线阅读 下载PDF
基于超参数优化和集成学习的互联网信贷个人信用评估 被引量:30
5
作者 王重仁 韩冬梅 《统计与决策》 CSSCI 北大核心 2019年第1期87-91,共5页
针对互联网信贷行业的个人信用风险评估问题,文章提出了一种基于贝叶斯参数优化和XGBoost算法的信用评估方法。方法包括五个步骤:数据预处理、特征选择、超参数优化、模型训练、模型预测和评估。实验结果表明,本方法的预测效果优于对比... 针对互联网信贷行业的个人信用风险评估问题,文章提出了一种基于贝叶斯参数优化和XGBoost算法的信用评估方法。方法包括五个步骤:数据预处理、特征选择、超参数优化、模型训练、模型预测和评估。实验结果表明,本方法的预测效果优于对比算法(Logistic回归、支持向量机,随机森林、神经网络),同时贝叶斯参数优化方法优于网格搜索法和随机搜索法。因此本文提出的信用评估方法,可以更好区分违约用户,有助于更好地识别用户的违约风险。 展开更多
关键词 信用风险评估 贝叶斯参数优化 集成学习 数据挖掘
在线阅读 下载PDF
基于时序数据集划分和时序交叉验证优化燃煤锅炉NO_(x)建模 被引量:1
6
作者 屈可扬 程静 +1 位作者 甘云华 陈东升 《中南大学学报(自然科学版)》 CSCD 北大核心 2024年第12期4665-4674,共10页
针对氮氧化物NO_(x)生成量进行机器学习建模。因燃煤锅炉系统具有时序特性,为了克服常规机器学习流程中随机数据集划分方式对时序数据集划分产生的测试数据泄露问题,提出使用时序数据集划分和时序交叉验证方法对燃煤锅炉NO_(x)建模进行... 针对氮氧化物NO_(x)生成量进行机器学习建模。因燃煤锅炉系统具有时序特性,为了克服常规机器学习流程中随机数据集划分方式对时序数据集划分产生的测试数据泄露问题,提出使用时序数据集划分和时序交叉验证方法对燃煤锅炉NO_(x)建模进行优化。使用基于贝叶斯方法的超参数优化算法,对模型的超参数进行搜索和优化。当使用时序交叉验证评价作为超参数优化的目标函数时,每组超参数评估的总耗时最高减少94.19%。在实际应用中,时序划分方式得到的模型平均绝对值误差比随机方式得到的模型平均绝对值误差更低,支持向量机、多层感知器和弹性网络回归模型平均绝对值误差分别减少18.49%、1.57%、0.73%。相比于随机划分方式,时序划分方式的预期精度与模型实际精度之间的误差更小,预期均方根误差与实际均方根误差间的相对误差最大减少235.32%,时序划分方式能够更准确地得出模型NO_(x)生成量的实际精度。 展开更多
关键词 电站锅炉 NO_(x)生成量 时序数据集划分 时序交叉验证 贝叶斯参数优化
在线阅读 下载PDF
基于集成学习的压电陶瓷烧结过程质量预测建模 被引量:2
7
作者 马超 翁智逸 何非 《计算机集成制造系统》 北大核心 2025年第1期147-157,共11页
烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指... 烧结工艺是影响压电陶瓷成品质量的关键工艺,涉及影响因素众多,具有非线性、滞后性的特点,导致烧成品的质量难以保证。针对这一难题,通过分析烧结过程中陶瓷微观结构的变化,提出平均晶粒尺寸和烧成密度两个间接质量指标,并与压电性能指标间的关系进行分析,建立质量预测模型,实现对烧结工艺的质量预测及控制。通过采取集成学习CatBoost算法,并结合贝叶斯超频带(BOHB)超参数优化算法,以五折交叉验证的方式建立了BOHB-CatBoost质量预测模型。最后,结合RMSE和R^(2)两个指标评估模型的性能,并与其他预测模型进行对比,验证了该模型具有更高的预测精度以及稳健性,对压电陶瓷的烧结生产过程具有较好的指导意义。 展开更多
关键词 压电陶瓷 质量预测 贝叶斯超频带超参数优化算法 CatBoost算法
在线阅读 下载PDF
pBBR:面向应用性能偏好的帕累托最优拥塞控制机制
8
作者 钟植任 潘恒 +1 位作者 武庆华 谢高岗 《高技术通讯》 北大核心 2025年第7期711-723,共13页
作为网络传输控制机制的核心,拥塞控制关注如何在异构网络环境中最优化特定传输性能目标。已有拥塞控制机制忽略了不同应用的性能偏好在吞吐量-时延两个维度上的帕累托最优前沿(Pareto optimal frontier,POF)分布,难以满足差异化应用的... 作为网络传输控制机制的核心,拥塞控制关注如何在异构网络环境中最优化特定传输性能目标。已有拥塞控制机制忽略了不同应用的性能偏好在吞吐量-时延两个维度上的帕累托最优前沿(Pareto optimal frontier,POF)分布,难以满足差异化应用的性能需求。针对上述问题,本文提出了一种面向应用性能偏好的帕累托最优拥塞控制机制pBBR(ParetooptimalBBR),结合离线网络场景学习和在线控制参数优化的思想,最大程度满足应用的差异化性能偏好。实验结果表明,pBBR能够在一个采集-识别周期内判断出网络场景的切换,从而快速选择当前网络场景的最优控制参数。每个网络场景下,pBBR都能够最大化满足不同的应用性能偏好:针对吞吐量敏感业务,pBBR可以达到Cubic(吞吐优先)的97%,且时延只有Cubic的52%;针对时延敏感业务,pBBR的时延可以达到Sprout(时延优先)的95%,同时吞吐量损失只有1%。此外,多参数优化可进一步提升pBBR性能,例如在高铁长期演进技术(long term evolution,LTE)通信场景下,单参数pBBR的吞吐量、时延分别是Cubic的94%和99%,而三参数pBBR则分别提升到Cubic的101%和93%(优于Cubic)。 展开更多
关键词 拥塞控制 吞吐量-时延 帕累托最优 贝叶斯参数优化
在线阅读 下载PDF
基于BayesianOpt-XGBoost的煤电机组碳排放因子预测 被引量:7
9
作者 赵敬皓 王娜娜 +1 位作者 蒋嘉铭 田亚峻 《中国环境科学》 EI CAS CSCD 北大核心 2024年第1期417-426,共10页
以贝叶斯参数优化的XGBoost算法为基础,基于机组特征和煤炭特性建立BayesianOpt-XGBoost预测模型,其发电、供热碳排放因子预测的相关系数R^(2)分别为0.91和0.87,绝对误差百分比为2.51%和2.91%.进一步,通过特征标准化方法减少对煤炭特性... 以贝叶斯参数优化的XGBoost算法为基础,基于机组特征和煤炭特性建立BayesianOpt-XGBoost预测模型,其发电、供热碳排放因子预测的相关系数R^(2)分别为0.91和0.87,绝对误差百分比为2.51%和2.91%.进一步,通过特征标准化方法减少对煤炭特性的依赖,模型预测R2分别为0.79和0.77,绝对误差百分比为3.94%和2.75%,精度仍可得到保障.基于该模型分析全国各省区煤电机组碳排放因子并与公布数据进行比较,证明了该模型的有效性.对机组预测结果的分析表明对现存的低容量机组进行改造、对新建造电机组采用大容量高参数可以减少碳排放强度. 展开更多
关键词 碳核算 煤电碳排放因子预测 贝叶斯参数优化 XGBoost 特征标准化
在线阅读 下载PDF
基于KPCA-LSTM的旋转机械剩余使用寿命预测 被引量:9
10
作者 曹现刚 叶煜 +2 位作者 赵友军 段雍 杨鑫 《振动与冲击》 EI CSCD 北大核心 2023年第24期81-91,共11页
旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网... 旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。 展开更多
关键词 旋转机械 核主成分分析(KPCA) 贝叶斯参数优化 长短期记忆网络(LSTM) 剩余使用寿命(RUL)预测
在线阅读 下载PDF
不同日照强度下的舰船目标识别 被引量:1
11
作者 刘坤 米乐红 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1735-1745,共11页
海面目标监测时,舰船目标的清晰度常随着不同的日照强度下海面光线反射强度而变化,不同的日照强度会导致舰船目标识别率不稳定,出现误判虚警率提高等问题.为此,提出基于ResNet-50的舰船目标识别算法.首先使用ResNet-50网络提取图像特征... 海面目标监测时,舰船目标的清晰度常随着不同的日照强度下海面光线反射强度而变化,不同的日照强度会导致舰船目标识别率不稳定,出现误判虚警率提高等问题.为此,提出基于ResNet-50的舰船目标识别算法.首先使用ResNet-50网络提取图像特征信息,并对日照强度变化前后的特征进行日照鲁棒损失约束,减小特征差异;然后采用灰度直方图计算特征统计矩的方法得到日照对比度、亮度、平滑度、信息量、三阶矩和熵6种特征,并生成新的特征向量对日照强度前后的特征再次进行日照鲁棒损失约束,削弱和约束日照变化前后亮度、对比度因素对特征的影响;最后将二者约束联合构成损失函数并进行训练,使用贝叶斯自适应超参数优化训练最佳权重.实验结果表明,针对舰船日照变化数据库的平均识别率达到90.47%,比改进前提高4.00%左右,对日照强度为25,65和80的舰船图像识别率分别提高3.14%,6.07%和16.41%,该算法对日照强度变化有着良好的约束作用,显著提升了识别率. 展开更多
关键词 图像识别 日照变化 灰度直方图 贝叶斯参数优化 深度学习 舰船识别 鲁棒特征损失函数
在线阅读 下载PDF
基于ForGAN的高速电梯制动器失效预测方法 被引量:9
12
作者 苏万斌 陈伟刚 +1 位作者 易灿灿 陈启锐 《机电工程》 CAS 北大核心 2023年第4期615-624,共10页
针对高速电梯制动器失效率及维护决策方面的研究目前仍存在明显的不足。为了解决目前高速电梯在制动器失效率预测上存在结果准确性和可靠性不足的问题,对高速电梯制动器失效模式和机理进行了分析,确定了影响制动器失效的主要原因和相关... 针对高速电梯制动器失效率及维护决策方面的研究目前仍存在明显的不足。为了解决目前高速电梯在制动器失效率预测上存在结果准确性和可靠性不足的问题,对高速电梯制动器失效模式和机理进行了分析,确定了影响制动器失效的主要原因和相关参数,提出了一种经贝叶斯超参数优化后的预测性生成对抗网络(ForGAN)模型。首先,采集了高速电梯制动器工作性能数据,并对其进行了归一化处理;然后,利用主成分分析法进行了理论失效率计算,并采用了基于BO+ForGAN的模型对制动器失效率进行了预测和分析;最后,将所得结果与SVM、BiLSTM等传统预测模型所得结果进行了分析对比,并选取绝对误差、均方根误差、决定系数(R2)对上述各个预测结果的精度进行了评估。研究结果表明:基于BO+ForGAN模型的制动器失效率预测效果最好,泛化能力最高,能适应不同的实验工况,且贝叶斯超参数寻优算法能够找到一组最优的超参数。评估结果显示,高速电梯制动器失效率预测值的准确率达到了98.1%,从而验证了基于BO+ForGAN模型(方法)的有效性。 展开更多
关键词 预测性生成对抗网络 贝叶斯参数优化 传统预测模型 均方根误差 泛化能力 失效率 维护决策
在线阅读 下载PDF
5G EN-DC场景下LTE基站下行速率预测方法研究 被引量:1
13
作者 陶倩昀 袁三男 张艳秋 《南京邮电大学学报(自然科学版)》 北大核心 2022年第2期72-78,共7页
在EN-DC Option 3x双连接中,5G gNB能否在数据分流时准确地获取LTE eNB下行速率,影响着5G E-UTRA和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)实际性能的高低。文中提出了一种结合贝叶斯超参数优化的双层堆叠长短时记忆时序预测模型(... 在EN-DC Option 3x双连接中,5G gNB能否在数据分流时准确地获取LTE eNB下行速率,影响着5G E-UTRA和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)实际性能的高低。文中提出了一种结合贝叶斯超参数优化的双层堆叠长短时记忆时序预测模型(BO_SLSTM)对LTE eNB下行速率进行实时高精度预测。研究了不同自适应学习率优化算法和时间步长对模型预测精度及速度的影响,实现算法的进一步优化。实验结果显示,经过优化后的模型预测准确性达到了99.8%,在LTE eNB下行速率预测中具有良好的预测性能和较好的适用性。 展开更多
关键词 双连接 Option3x 下行速率预测 BO_SLSTM 贝叶斯参数优化 时序预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部