期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用改进YOLOv4算法的大豆单株豆荚数检测方法
被引量:
11
1
作者
郭瑞
于翀宇
+3 位作者
贺红
赵永健
于慧
冯献忠
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第18期179-187,共9页
大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算...
大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算法进行了改进,使用迁移学习预训练,获取最优模型对测试集进行预测。试验结果表明,该研究模型的平均准确率为80.55%,数据扩充后准确率达到了84.37%,比育种专家目测准确率提高了0.37个百分点,若不考虑5粒荚,该研究模型的平均准确率为95.92%,比YOLOv4模型提高了10.57个百分点,具有更强的检测性能。在简单背景的摆盘豆荚检测中,该研究模型预测的平均准确率达到了99.1%,比YOLOv4模型提高了1.81个百分点,研究结果表明该模型在不同场景下的大豆豆荚检测中具有较强的泛化能力,可为大豆人工智能育种提供参考。
展开更多
关键词
图像识别
算法
大豆
豆荚检测
YOLOv4
K-MEANS聚类
注意力机制
在线阅读
下载PDF
职称材料
题名
采用改进YOLOv4算法的大豆单株豆荚数检测方法
被引量:
11
1
作者
郭瑞
于翀宇
贺红
赵永健
于慧
冯献忠
机构
山东大学机电与信息工程学院
中国科学院东北地理与农业生态研究所
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第18期179-187,共9页
基金
国家重点研发计划主要经济作物分子设计育种(No.2016YFD0101900)。
文摘
大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算法进行了改进,使用迁移学习预训练,获取最优模型对测试集进行预测。试验结果表明,该研究模型的平均准确率为80.55%,数据扩充后准确率达到了84.37%,比育种专家目测准确率提高了0.37个百分点,若不考虑5粒荚,该研究模型的平均准确率为95.92%,比YOLOv4模型提高了10.57个百分点,具有更强的检测性能。在简单背景的摆盘豆荚检测中,该研究模型预测的平均准确率达到了99.1%,比YOLOv4模型提高了1.81个百分点,研究结果表明该模型在不同场景下的大豆豆荚检测中具有较强的泛化能力,可为大豆人工智能育种提供参考。
关键词
图像识别
算法
大豆
豆荚检测
YOLOv4
K-MEANS聚类
注意力机制
Keywords
image recognition
algorithm
soybean
pod detection
YOLOv4
K-means clustering
attention mechanism
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S126 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用改进YOLOv4算法的大豆单株豆荚数检测方法
郭瑞
于翀宇
贺红
赵永健
于慧
冯献忠
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部