The network resource allocation in SDN for control applications is becoming a key problem in the near future because of the conflict between the need of the flow-level flexibility control and the limited capacity of f...The network resource allocation in SDN for control applications is becoming a key problem in the near future because of the conflict between the need of the flow-level flexibility control and the limited capacity of flow table.Based on the analysis of the difference of the definition of network resource between SDN and traditional IP network,the idea of the integrated allocation of link bandwidth and flow table for multiple control applications in SDN is proposed in this paper.Furthermore,a price-based joint allocation model of network resource in SDN is built by introducing the price for each of the resources,which can get the proportional fair allocation of link bandwidth and the minimum global delay at the same time.We have also designed a popular flow scheduling policy based on the proportional fair allocation of link bandwidth in order to achieve the minimum global delay.A flow scheduling module has been implemented and evaluated in Floodlight,named virtual forwarding space(VFS).VFS can not only implement the fair allocation of link bandwidth and minimum delay flow scheduling in data plane but also accelerate packet forwarding by looking up control rules in control plane.展开更多
The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility...The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.展开更多
基金Supported by the National High-tech R&D Program("863" Program) of China (No.2013AA013505)the National Science Foundation of China(No.61472213)National Research Foundation of Korea(NRF 2014K1A1A2064649)
文摘The network resource allocation in SDN for control applications is becoming a key problem in the near future because of the conflict between the need of the flow-level flexibility control and the limited capacity of flow table.Based on the analysis of the difference of the definition of network resource between SDN and traditional IP network,the idea of the integrated allocation of link bandwidth and flow table for multiple control applications in SDN is proposed in this paper.Furthermore,a price-based joint allocation model of network resource in SDN is built by introducing the price for each of the resources,which can get the proportional fair allocation of link bandwidth and the minimum global delay at the same time.We have also designed a popular flow scheduling policy based on the proportional fair allocation of link bandwidth in order to achieve the minimum global delay.A flow scheduling module has been implemented and evaluated in Floodlight,named virtual forwarding space(VFS).VFS can not only implement the fair allocation of link bandwidth and minimum delay flow scheduling in data plane but also accelerate packet forwarding by looking up control rules in control plane.
基金partly supported by NSFC under grant No.61371191 and No.61472389
文摘The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.