The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in futu...The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.展开更多
The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution du...The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution during tensile deformation was analyzed by electron backscatter diffraction(EBSD)technology.Furthermore,the slip within adjacent grains and grain boundary strain were discussed using the bicrystal model theory.The results show that the microstructure of the pure Mg at a pulling rate of 200μm/s is columnar polycrystal with growth orientation concentrated in<022ˉ5>,and no transverse grain boundaries can be seen.In addition,the Schmid factors(SFs)of basalslips in columnar crystals are higher than 0.43 under tensile stress.Moreover,the geometric compatibility factor of slip systems on both sides of grain boundaries is greater than 0.7,showing good strain coordination ability of grain boundaries.Therefore,the elongation of the directionally solidified pure Mg is as high as 53%at room temperature.展开更多
Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set ...A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.展开更多
A hierarchical scheme of feature-based model similarity measurement was proposed,named CSG_D2,in which both geometry similarity and topology similarity were applied.The features of 3D mechanical part were constructed ...A hierarchical scheme of feature-based model similarity measurement was proposed,named CSG_D2,in which both geometry similarity and topology similarity were applied.The features of 3D mechanical part were constructed by a series of primitive features with tree structure,as a form of constructive solid geometry(CSG) tree.The D2 shape distributions of these features were extracted for geometry similarity measurement,and the pose vector and non-disappeared proportion of each leaf node were gained for topology similarity measurement.Based on these,the dissimilarity between the query and the candidate was accessed by level-by-level CSG tree comparisons.With the adjustable weights,our scheme satisfies different comparison emphasis on the geometry or topology similarity.The assessment results from CSG_D2 demonstrate more discriminative than those from D2 in the analysis of precision-recall and similarity matrix.Finally,an experimental search engine is applied for mechanical parts reuse by using CSG_D2,which is convenient for the mechanical design process.展开更多
基金Project(2022YFC2904502)supported by the National Key Research and Development Program of ChinaProject(62273357)supported by the National Natural Science Foundation of China。
文摘The electricity-hydrogen integrated energy system(EH-IES)enables synergistic operation of electricity,heat,and hydrogen subsystems,supporting renewable energy integration and efficient multi-energy utilization in future low carbon societies.However,uncertainties from renewable energy and load variability threaten system safety and economy.Conventional chance-constrained programming(CCP)ensures reliable operation by limiting risk.However,increasing source-load uncertainties that can render CCP models infeasible and exacerbate operational risks.To address this,this paper proposes a risk-adjustable chance-constrained goal programming(RACCGP)model,integrating CCP and goal programming to balance risk and cost based on system risk assessment.An intelligent nonlinear goal programming method based on the state transition algorithm(STA)is developed,along with an improved discretized step transformation,to handle model nonlinearity and enhance computational efficiency.Experimental results show that the proposed model reduces costs while controlling risk compared to traditional CCP,and the solution method outperforms average sample sampling in efficiency and solution quality.
基金Projects(51775099,51675092)supported by the National Natural Science Foundation of ChinaProjects(E2021501019,E2022501001,E2022501006)supported by the Natural Science Foundation of Hebei Province,China。
文摘The pure Mg with columnar crystals was prepared by directional solidification,and the effect of process parameters on the crystal orientation and tensile properties was studied.Moreover,the microstructure evolution during tensile deformation was analyzed by electron backscatter diffraction(EBSD)technology.Furthermore,the slip within adjacent grains and grain boundary strain were discussed using the bicrystal model theory.The results show that the microstructure of the pure Mg at a pulling rate of 200μm/s is columnar polycrystal with growth orientation concentrated in<022ˉ5>,and no transverse grain boundaries can be seen.In addition,the Schmid factors(SFs)of basalslips in columnar crystals are higher than 0.43 under tensile stress.Moreover,the geometric compatibility factor of slip systems on both sides of grain boundaries is greater than 0.7,showing good strain coordination ability of grain boundaries.Therefore,the elongation of the directionally solidified pure Mg is as high as 53%at room temperature.
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.
基金Foundation item: Project(2012AA051603) supported by the National High Technology Research and Development Program 863 Plan of China
文摘A sensor scheduling problem was considered for a class of hybrid systems named as the stochastic linear hybrid system (SLHS). An algorithm was proposed to select one (or a group of) sensor at each time from a set of sensors. Then, a hybrid estimation algorithm was designed to compute the estimates of the continuous and discrete states of the SLHS based on the observations from the selected sensors. As the sensor scheduling algorithm is designed such that the Bayesian decision risk is minimized, the true discrete state can be better identified. Moreover, the continuous state estimation performance of the proposed algorithm is better than that of hybrid estimation algorithms using only predetermined sensors. Finallyo the algorithms are validated through an illustrative target tracking example.
基金Project(51175287)supported by the National Natural Science Foundation of ChinaProject(2006AA04Z112)supported by National High Technology Research and Development Program of China
文摘A hierarchical scheme of feature-based model similarity measurement was proposed,named CSG_D2,in which both geometry similarity and topology similarity were applied.The features of 3D mechanical part were constructed by a series of primitive features with tree structure,as a form of constructive solid geometry(CSG) tree.The D2 shape distributions of these features were extracted for geometry similarity measurement,and the pose vector and non-disappeared proportion of each leaf node were gained for topology similarity measurement.Based on these,the dissimilarity between the query and the candidate was accessed by level-by-level CSG tree comparisons.With the adjustable weights,our scheme satisfies different comparison emphasis on the geometry or topology similarity.The assessment results from CSG_D2 demonstrate more discriminative than those from D2 in the analysis of precision-recall and similarity matrix.Finally,an experimental search engine is applied for mechanical parts reuse by using CSG_D2,which is convenient for the mechanical design process.