One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isol...One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.展开更多
Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted w...Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.展开更多
基金Project(61503048)supported by the National Natural Science Foundation of ChinaProjects(16C0050,16C0062)supported by Scientific Research Project of Hunan Provincial Department of Education,China
文摘One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.
基金Project(2019QZKK0905)supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program,ChinaProject(41901074)supported by the National Natural Science Foundation of China+2 种基金Project(2020A1515010745)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(SKLFSE201810)supported by the Open Fund of the State Key Laboratory of Frozen Soil Engineering,ChinaProject(2019MS119)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Embankment stability is the primary problem for the expressway construction in permafrost regions.The proposed Qinghai-Tibet Expressway(QTE)is planned to construct along the Qinghai-Tibet Project Corridor.Confronted with harsh environmental condition and intense heat exchange between earth and atmosphere,it is necessary to predict and evaluate the stability of the proposed QTE.In this study,the factors affecting the embankment stability are analyzed firstly.And then,a scheme for the stability evaluation of the embankment is established.Finally,the evaluation scheme is used for the pre-evaluation of the stability for the proposed QTE with different geothermal regulation measures(GRMs).The results indicate that the influencing factors include climatic environment,permafrost property,engineering condition and geological condition,and among them,engineering condition and permafrost property are the main influence factors for embankment stability.The stability of the proposed QTE varies greatly in the different geomorphological regions.The application effect and contribution to embankment stability of the existing GRMs are different,and using GRMs cannot completely overcome the influence of various factors on expressway stability.In the construction process,different GRMs should be adopted depending on the geomorphological environment where the embankment is located to ensure the embankment stability.