期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
水动力学模型实时校正方法对比 被引量:16
1
作者 刘开磊 姚成 +2 位作者 李致家 阚光远 包红军 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期124-129,共6页
选择典型的实时校正方法:传统的误差自回归、基于K最邻近算法(KNN)的非参数校正及基于Kalman滤波的多断面校正法,并以Kalman滤波与KNN结合构造综合方法,以淮河流域吴家渡—小柳巷区间作为试验河段,构建一维水动力学模型并与实时校正方... 选择典型的实时校正方法:传统的误差自回归、基于K最邻近算法(KNN)的非参数校正及基于Kalman滤波的多断面校正法,并以Kalman滤波与KNN结合构造综合方法,以淮河流域吴家渡—小柳巷区间作为试验河段,构建一维水动力学模型并与实时校正方法联合应用。简要介绍这4种方法的原理与模型构建方法,然后对比分析各种方法的模拟结果,尤其对模拟洪峰稳定性、峰现时间、峰现误差等进行比较,认为前3种基本方法均能在相当长的预见期内提高洪水的预报精度,而综合法实时校正法对洪峰部位的模拟更为稳定可靠、总体效果更好,更适合预报校正工作的需要。 展开更多
关键词 水动力学模型 模型实时校正 误差自回归方法 Kalman滤波算法 K最近邻算法
在线阅读 下载PDF
半湿润流域洪水预报实时校正方法比较 被引量:14
2
作者 徐杰 李致家 +1 位作者 霍文博 马亚楠 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期317-322,共6页
为了提高新安江模型在半湿润流域的洪水预报精度,选择K最近邻(KNN)算法、传统的误差自回归(AR)方法、反馈模拟方法3种实时校正方法,以陕西省陈河流域为试验对象进行洪水预报。以洪峰相对误差和纳什效率系数为评价指标,分析对比3种方法... 为了提高新安江模型在半湿润流域的洪水预报精度,选择K最近邻(KNN)算法、传统的误差自回归(AR)方法、反馈模拟方法3种实时校正方法,以陕西省陈河流域为试验对象进行洪水预报。以洪峰相对误差和纳什效率系数为评价指标,分析对比3种方法的校正效果。结果表明:3种校正方法均能提高预报纳什效率系数,其中反馈模拟最优,AR、KNN效果次之;反馈模拟对洪峰误差校正相比于KNN算法在短预见期内更为精确,两者均能减小AR法在洪峰误差校正上的不足;加入历史样本的KNN算法在洪峰误差校正上效果优于反馈模拟,可有效提高洪水预报精度。 展开更多
关键词 洪水预报 预报精度 实时校正 K最近邻算法 反馈模拟方法 误差自回归方法 新安江模型 半湿润流域 陈河流域
在线阅读 下载PDF
山区小流域洪水预报实时校正研究 被引量:23
3
作者 韩通 李致家 +1 位作者 刘开磊 黄鹏年 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期208-214,共7页
为了解决现有实时校正方法对山区小流域洪水进行校正能力不足的问题,引入K最近邻算法用于洪水预报实时校正。以安徽省沙埠流域为试验流域,构建基于K最近邻算法的实时校正模型,同时采用BP神经网络实时校正法和传统的误差自回归方法,以洪... 为了解决现有实时校正方法对山区小流域洪水进行校正能力不足的问题,引入K最近邻算法用于洪水预报实时校正。以安徽省沙埠流域为试验流域,构建基于K最近邻算法的实时校正模型,同时采用BP神经网络实时校正法和传统的误差自回归方法,以洪峰相对误差和确定性系数为评价指标,分析各校正模型的校正结果。结果表明:基于K最近邻的实时校正法对确定性系数改善最优,BP神经网络实时校正法对洪峰误差校正更精确;将历史洪水资料纳入学习样本后,基于K最近邻的实时校正法的校正能力将进一步提升。基于K最近邻的实时校正法能够有效避免误差自回归方法对洪峰误差控制较差的缺陷,适应性强,反应灵敏,精确度高,可作为山区小流域洪水预报实时校正的有效工具。 展开更多
关键词 实时校正 山区小流域 K最近邻算法 BP神经网络 误差自回归方法 沙埠流域
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部