期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SPGA-XGBoost的洪水预报误差智能校正方法
1
作者 贾克 秦少玲 +1 位作者 余宇峰 徐雨妮 《人民长江》 北大核心 2025年第6期1-7,14,共8页
误差实时校正是提升洪水预报精度的重要手段。针对传统误差校正模型的校正精度及稳定性欠佳等问题,将机器学习技术引入误差序列映射函数训练过程,提出一种基于SPGA-XGBoost的洪水预报误差智能校正方法。首先以传统水文预报模型的预测值... 误差实时校正是提升洪水预报精度的重要手段。针对传统误差校正模型的校正精度及稳定性欠佳等问题,将机器学习技术引入误差序列映射函数训练过程,提出一种基于SPGA-XGBoost的洪水预报误差智能校正方法。首先以传统水文预报模型的预测值和实测值构建误差序列并作为误差校正模型的输入,引入极限梯度提升算法XGBoost构建误差校正模型,以充分挖掘误差序列非线性关系,然后提出融合粒子群优化算法和模拟退火算法的混合遗传优化算法SPGA对XGBoost模型超参数进行寻优,从而更好地挖掘误差序列的时序特征以提升误差校正的精度。长江螺山站的实例应用结果表明:用SPGA-XGBoost模型校正相较未校正前RMSE,MAE分别降低0.440 m和0.356 m,NSE提升0.016,优于STGCN模型、GBDT模型、KNN等方法。SPGA-XGBoost模型能充分挖掘误差序列的相关关系,提高水位预报精度,具有较好的适用性和应用前景。 展开更多
关键词 洪水预报误差 误差智能校正 极限梯度提升算法 混合遗传优化算法 螺山站 长江
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部