期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进Bi-LSTM和XGBoost的电力负荷组合预测方法 被引量:17
1
作者 代业明 周琼 《上海理工大学学报》 CAS CSCD 北大核心 2022年第2期138-147,共10页
电力负荷预测在平衡能源分配、经济性和电力系统安全可靠运行方面发挥着重要作用,精准的负荷预测可以降低电力运行的成本和风险,提高电网环境效益和经济效益。首先根据加权灰色关联投影算法对数据进行预处理,然后应用注意力(Attention)... 电力负荷预测在平衡能源分配、经济性和电力系统安全可靠运行方面发挥着重要作用,精准的负荷预测可以降低电力运行的成本和风险,提高电网环境效益和经济效益。首先根据加权灰色关联投影算法对数据进行预处理,然后应用注意力(Attention)机制来改进双向长短期记忆(Bi-LSTM)模型,并结合极端梯度提升(XGBoost)模型构建一种由误差倒数法确定权重的电力负荷组合预测模型,从而得到一种新的短期电力负荷预测方法。通过新加坡电力市场数据集对该方法进行评估,结果显示,该方法的预测结果比单一预测方法更加接近真实数据且误差更小,具备有效性、精准性和实用性的优势。 展开更多
关键词 短期负荷预测 双向长短期记忆网络 极端梯度提升 误差倒数组合法 组合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部