期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
用T6668构成的语音处理系统
1
作者 覃少华 陈兴文 《广西师范大学学报(自然科学版)》 CAS 1993年第3期37-42,共6页
讨论语言处理器T6668的原理及其用法,并结合实例提出了用人工控制的方法实现语音功能的处理系统。
关键词 语言处理器 人工控制 语言处理系统
在线阅读 下载PDF
航空发动机数控系统的板级协同仿真
2
作者 江澄 孙健国 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第6期947-950,共4页
从工程应用的角度出发,结合航空发动机数控系统核心电路的特点,提出了数控系统处理器模块板级协同仿真的方法。建立了80386EX模型和特殊器件的高精度逻辑器件仿真模型,使模型与实际芯片特性相符,并具有可升级能力。编写处理器控制语言程... 从工程应用的角度出发,结合航空发动机数控系统核心电路的特点,提出了数控系统处理器模块板级协同仿真的方法。建立了80386EX模型和特殊器件的高精度逻辑器件仿真模型,使模型与实际芯片特性相符,并具有可升级能力。编写处理器控制语言程序,结合软件算法模型,解决了板级仿真模型完备性与运行效率的矛盾。通过核心机控制器CPU模块仿真过程,讨论了现代板级仿真方法在付诸实施时面临的问题及解决方法。仿真的处理器模块在实际运用中验证了所采用的设计思路的合理性及具体实施细节的正确性。 展开更多
关键词 板级 协同仿真 数控系统 处理器 处理器控制语言 高精度逻辑器件仿真模型
在线阅读 下载PDF
Construction of unsupervised sentiment classifier on idioms resources 被引量:2
3
作者 谢松县 王挺 《Journal of Central South University》 SCIE EI CAS 2014年第4期1376-1384,共9页
Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is hig... Sentiment analysis is the computational study of how opinions, attitudes, emotions, and perspectives are expressed in language, and has been the important task of natural language processing. Sentiment analysis is highly valuable for both research and practical applications. The focuses were put on the difficulties in the construction of sentiment classifiers which normally need tremendous labeled domain training data, and a novel unsupervised framework was proposed to make use of the Chinese idiom resources to develop a general sentiment classifier. Furthermore, the domain adaption of general sentiment classifier was improved by taking the general classifier as the base of a self-training procedure to get a domain self-training sentiment classifier. To validate the effect of the unsupervised framework, several experiments were carried out on publicly available Chinese online reviews dataset. The experiments show that the proposed framework is effective and achieves encouraging results. Specifically, the general classifier outperforms two baselines(a Na?ve 50% baseline and a cross-domain classifier), and the bootstrapping self-training classifier approximates the upper bound domain-specific classifier with the lowest accuracy of 81.5%, but the performance is more stable and the framework needs no labeled training dataset. 展开更多
关键词 sentiment analysis sentiment classification bootstrapping idioms general classifier domain-specific classifier
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部