期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
LDA模型下不同分词方法对文本分类性能的影响研究
被引量:
9
1
作者
李湘东
高凡
丁丛
《计算机应用研究》
CSCD
北大核心
2017年第1期62-66,共5页
通过定义类别聚类密度、类别复杂度以及类别清晰度三个指标,从语料库信息度量的角度研究多种代表性的中文分词方法在隐含概率主题模型LDA下对文本分类性能的影响,定量、定性地分析不同分词方法在网页和学术文献等不同类型文本的语料上...
通过定义类别聚类密度、类别复杂度以及类别清晰度三个指标,从语料库信息度量的角度研究多种代表性的中文分词方法在隐含概率主题模型LDA下对文本分类性能的影响,定量、定性地分析不同分词方法在网页和学术文献等不同类型文本的语料上进行分类的适用性及影响分类性能的原因。结果表明:三项指标可以有效指明分词方法对语料在分类时产生的影响,Ik Analyzer和ICTCLAS分词法分别受类别复杂度和类别聚类密度的影响较大,二元分词法受三个指标的作用相当,使其对于不同语料具有较好的适应性。对于学术文献类型的语料,使用二元分词法时的分类效果较好,F1值均在80%以上;而网页类型的语料对于各种分词法的适应性更强。尝试通过对语料进行信息度量而非单纯的实验来选择提高该语料分类性能的最佳分词方法,以期为网页和学术文献等不同类型的文本在基于LDA模型的分类系统中选择合适的中文分词方法提供参考。
展开更多
关键词
文本分类
LDA主题模型
语料度量
分词方法
在线阅读
下载PDF
职称材料
题名
LDA模型下不同分词方法对文本分类性能的影响研究
被引量:
9
1
作者
李湘东
高凡
丁丛
机构
武汉大学信息管理学院
武汉大学信息资源研究中心
出处
《计算机应用研究》
CSCD
北大核心
2017年第1期62-66,共5页
基金
国家社会科学基金资助项目(15BTQ066)
文摘
通过定义类别聚类密度、类别复杂度以及类别清晰度三个指标,从语料库信息度量的角度研究多种代表性的中文分词方法在隐含概率主题模型LDA下对文本分类性能的影响,定量、定性地分析不同分词方法在网页和学术文献等不同类型文本的语料上进行分类的适用性及影响分类性能的原因。结果表明:三项指标可以有效指明分词方法对语料在分类时产生的影响,Ik Analyzer和ICTCLAS分词法分别受类别复杂度和类别聚类密度的影响较大,二元分词法受三个指标的作用相当,使其对于不同语料具有较好的适应性。对于学术文献类型的语料,使用二元分词法时的分类效果较好,F1值均在80%以上;而网页类型的语料对于各种分词法的适应性更强。尝试通过对语料进行信息度量而非单纯的实验来选择提高该语料分类性能的最佳分词方法,以期为网页和学术文献等不同类型的文本在基于LDA模型的分类系统中选择合适的中文分词方法提供参考。
关键词
文本分类
LDA主题模型
语料度量
分词方法
Keywords
text classification
LDA topic model
corpus measure
word segmentation method
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
LDA模型下不同分词方法对文本分类性能的影响研究
李湘东
高凡
丁丛
《计算机应用研究》
CSCD
北大核心
2017
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部