期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于语义加权距离的语义相似度改进算法
被引量:
5
1
作者
徐桂臣
叶枫
《情报杂志》
CSSCI
北大核心
2012年第2期119-123,共5页
在信息检索领域,概念的语义相似度计算起着重要的作用。针对现有研究文献中语义相似度计算中的若干问题,本文在语义加权距离算法的基础上讨论了多继承问题和概念属性问题。对于多继承问题,探讨了概念之间通过父概念和子概念进行连接所...
在信息检索领域,概念的语义相似度计算起着重要的作用。针对现有研究文献中语义相似度计算中的若干问题,本文在语义加权距离算法的基础上讨论了多继承问题和概念属性问题。对于多继承问题,探讨了概念之间通过父概念和子概念进行连接所得到的路径长度相等的情况;对于概念属性问题,本文将对象类型属性和数据类型属性区别对待,提出了数据类型属性的相似度算法。最后,通过计算一个实例中概念节点的相似度,证明了本文算法的有效性。
展开更多
关键词
本体
语义相似度算法
语义
加权距离
多继承
概念属性
在线阅读
下载PDF
职称材料
一种基于语义相似度的文本聚类算法
被引量:
18
2
作者
孙爽
章勇
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2006年第6期712-716,共5页
文本聚类在很多文本挖掘和信息检索系统中发挥着重要的作用。现有的聚类算法大多数都是基于向量空间模型,文档集合中出现的单词词频作为特征项。这些算法都存在数据维数过高、聚簇难以描述的问题,而且忽略了单词间的语义联系。本文提出...
文本聚类在很多文本挖掘和信息检索系统中发挥着重要的作用。现有的聚类算法大多数都是基于向量空间模型,文档集合中出现的单词词频作为特征项。这些算法都存在数据维数过高、聚簇难以描述的问题,而且忽略了单词间的语义联系。本文提出了一种基于语义相似度的文本聚类算法——TCU SS(Text clustering usingsem an ticsim ilarity)算法。TCU SS算法将文档表示成概念列表,有效地解决了数据维数高和聚簇描述难的问题,并给出如何利用概念列表进行聚簇描述的方法。TCU SS算法利用两个概念列表中单词间的语义相似度作为文档间相近程度的度量,并以图为基础进行聚类分析,避免有些聚类算法对聚簇形状的限制。实验证明,TCU SS算法提高了聚类质量。
展开更多
关键词
文本聚类
语义
相似
度
文本表示
语义
相似
度
的文本聚类
算法
在线阅读
下载PDF
职称材料
题名
基于语义加权距离的语义相似度改进算法
被引量:
5
1
作者
徐桂臣
叶枫
机构
浙江工业大学经济贸易管理学院
出处
《情报杂志》
CSSCI
北大核心
2012年第2期119-123,共5页
文摘
在信息检索领域,概念的语义相似度计算起着重要的作用。针对现有研究文献中语义相似度计算中的若干问题,本文在语义加权距离算法的基础上讨论了多继承问题和概念属性问题。对于多继承问题,探讨了概念之间通过父概念和子概念进行连接所得到的路径长度相等的情况;对于概念属性问题,本文将对象类型属性和数据类型属性区别对待,提出了数据类型属性的相似度算法。最后,通过计算一个实例中概念节点的相似度,证明了本文算法的有效性。
关键词
本体
语义相似度算法
语义
加权距离
多继承
概念属性
Keywords
ontology semantic similarity algorithm weighted semantic distances multiple inheritance concept attributes
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
一种基于语义相似度的文本聚类算法
被引量:
18
2
作者
孙爽
章勇
机构
南京航空航天大学信息科学与技术学院
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2006年第6期712-716,共5页
文摘
文本聚类在很多文本挖掘和信息检索系统中发挥着重要的作用。现有的聚类算法大多数都是基于向量空间模型,文档集合中出现的单词词频作为特征项。这些算法都存在数据维数过高、聚簇难以描述的问题,而且忽略了单词间的语义联系。本文提出了一种基于语义相似度的文本聚类算法——TCU SS(Text clustering usingsem an ticsim ilarity)算法。TCU SS算法将文档表示成概念列表,有效地解决了数据维数高和聚簇描述难的问题,并给出如何利用概念列表进行聚簇描述的方法。TCU SS算法利用两个概念列表中单词间的语义相似度作为文档间相近程度的度量,并以图为基础进行聚类分析,避免有些聚类算法对聚簇形状的限制。实验证明,TCU SS算法提高了聚类质量。
关键词
文本聚类
语义
相似
度
文本表示
语义
相似
度
的文本聚类
算法
Keywords
text clustering
semantic similarity
text representation
text clustering using semantic similarity (TCUSS) algorithm
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于语义加权距离的语义相似度改进算法
徐桂臣
叶枫
《情报杂志》
CSSCI
北大核心
2012
5
在线阅读
下载PDF
职称材料
2
一种基于语义相似度的文本聚类算法
孙爽
章勇
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2006
18
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部