期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种面向领域的Web服务语义聚类方法 被引量:5
1
作者 赵一 李昭 +2 位作者 陈鹏 何泾沙 何克清 《小型微型计算机系统》 CSCD 北大核心 2019年第1期81-88,共8页
目前,互联网中发布的Web服务大都通过自然语言进行描述,这种非结构化的描述方式为机器进行自动分析与处理带来了极大的困难.如何提高服务发现的效率和精确率,已成为服务计算领域的研究热点之一.服务聚类是服务发现的重要支撑技术,通过... 目前,互联网中发布的Web服务大都通过自然语言进行描述,这种非结构化的描述方式为机器进行自动分析与处理带来了极大的困难.如何提高服务发现的效率和精确率,已成为服务计算领域的研究热点之一.服务聚类是服务发现的重要支撑技术,通过将语义相似的服务加以聚类和组织,有助于改进服务发现的效果.当前的服务聚类技术主要采用LDA(潜式狄里克雷分布)和K-means等模型在同一领域下进行工作,利用这些方法进行服务聚类时还存在一定的局限性,例如,未充分利用词汇间的语义关系进行降维,从而导致服务发现的效果不够理想.针对该问题,本文使用神经网络模型(word2vec模型)获得服务描述中的同义词表并生成领域特征词集,来最大限度的降低服务特征向量维度;在此基础上,提出S-LDA(Semantic Latent Dirichlet Allocation)模型对同一领域的服务进行聚类,由此构建了一个面向领域的Web服务聚类框架(Domain Semantic aided Web Service Clustering,DSWSC).在ProgrammableWeb网站上发布的服务数据集开展的实验表明,与LDA和K-means等方法相比,本文方法在熵、聚类纯度和F指标上均取得了明显效果,有助于提高服务搜索的准确率. 展开更多
关键词 语义潜式狄里克雷分布 Word2vec web服务聚类
在线阅读 下载PDF
类别约束下自适应主题建模的图像场景分类 被引量:2
2
作者 唐颖军 《小型微型计算机系统》 CSCD 北大核心 2011年第5期958-963,共6页
提出一种基于类别约束的主题模型用于实现场景分类.不同于现有方法,本文将图像场景类别信息引入模型参数推导过程中,采用与其类别相关的类主题集描述图像的语义内容.针对各场景类图像中潜在主题数量变化,提出了一种ATS-LDA(自适应主题... 提出一种基于类别约束的主题模型用于实现场景分类.不同于现有方法,本文将图像场景类别信息引入模型参数推导过程中,采用与其类别相关的类主题集描述图像的语义内容.针对各场景类图像中潜在主题数量变化,提出了一种ATS-LDA(自适应主题数的潜在狄里克雷分布)模型实现中层语义的建模算法.该模型依据各场景类训练样本关于视觉词语表示的变化估计所需主题数,体现了各类场景中间语义的繁简变化.根据各类模型下的图像概率分布,采用最大似然估计实现测试样本的场景语义分类.改变了现有主题模型需要依赖于其它分类器完成场景分类的现状.通过多个图像数据集分类任务证明该模型能够在不需要太多训练的情况下取得较好地性能. 展开更多
关键词 里克分布 主题模型 场景分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部