中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分...中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分类结果的影响,提出基于网络新词改进文本分类TF-IDF算法。在文本预处理中识别新词,并在向量空间模型表示中改变特征权重计算公式。实验结果表明把新词发现加入文本预处理,可以达到特征降维的目的,并且改进后的特征权重算法能优化文本分类的结果。展开更多
文摘中国互联网环境的发展,让大量蕴含丰富信息的新词得以普及。而传统的特征词权重TF-IDF(Term Frequency and Inverted Document Frequency)算法主要考虑TF和IDF两个方面的因素,未考虑到新词这一新兴词类的优势。针对特征项中的新词对分类结果的影响,提出基于网络新词改进文本分类TF-IDF算法。在文本预处理中识别新词,并在向量空间模型表示中改变特征权重计算公式。实验结果表明把新词发现加入文本预处理,可以达到特征降维的目的,并且改进后的特征权重算法能优化文本分类的结果。
文摘针对区级人大报告特定的几方面内容进行文本分类,可以让人大工作人员对不同工作内容进行快速分辨,是构建人大报告辅助生成系统的必要内容。为对不同内容分类,基于TF-IDF(词频-逆文档频率)与知识增强语义表示模型ERNIE(enhanced representation from knowledge integration)结合构建分类模型。ERNIE直接对语义知识单元进行建模,在此基础上加入TF-IDF提升模型性能。实验结果表明,该方法在分类的准确率和召回率上表现不错,使ERNIE模型收敛速度加快,通过该模型可以较好地对人大报告的文本进行分类。