期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多层次混合相似度的协同过滤推荐算法 被引量:20
1
作者 袁正午 陈然 《计算机应用》 CSCD 北大核心 2018年第3期633-638,共6页
针对传统协同过滤推荐算法在数据稀疏的情况下存在的性能缺陷和相似性度量方法的不足,为了提高推荐精度,改进原算法得到了一种基于多层次混合相似度的协同过滤推荐算法。该算法主要分为三个不同的层次:首先采用模糊集的概念将用户评分... 针对传统协同过滤推荐算法在数据稀疏的情况下存在的性能缺陷和相似性度量方法的不足,为了提高推荐精度,改进原算法得到了一种基于多层次混合相似度的协同过滤推荐算法。该算法主要分为三个不同的层次:首先采用模糊集的概念将用户评分模糊化,计算用户的模糊偏好,并结合用户评分的修正余弦相似度和用户评分的Jarccad相似度总体作为用户评分相似度;再对用户评分进行分类来预测用户对项目类别的兴趣程度,从而计算出用户兴趣相似度;然后利用用户的特征属性来预测用户之间的特征相似度;其次根据用户评分数量来动态地融合用户兴趣相似度及用户特征相似度;最后融合三个层次的相似度作为用户混合相似度的结果。利用Movie Lens公用数据集对改进前后的算法进行对比实验,结果表明:当在邻居集合数量较少时,改进的混合算法相对修正余弦相似度算法的平均绝对偏差(MAE)下降了5%左右;较改进的修正的Jaccard相似性系数的协同过滤(MKJCF)算法也存在略微的优势,随着邻居集合数的增加MAE也平均下降了1%左右。该算法采用多层次的推荐策略提高了用户的推荐精度,有效地缓解了数据稀疏性问题和单一度量方法的影响。 展开更多
关键词 协同过滤 数据稀疏性 模糊集 评分相似度 兴趣相似 特征相似
在线阅读 下载PDF
基于多维特征聚类和用户评分的景点推荐算法 被引量:5
2
作者 程鹏 柳林 +2 位作者 刘晓 许传新 郭慧 《计算机工程与设计》 北大核心 2019年第5期1322-1327,共6页
针对传统的协调过滤推荐算法利用单一评分矩阵带来的数据稀疏性问题,提出一种基于多维特征聚类和用户评分的景点推荐算法。划分用户类别,使用基于属性权重的加权K-means聚类算法将表示用户特征的多维指标数值进行聚类;确定目标用户类别... 针对传统的协调过滤推荐算法利用单一评分矩阵带来的数据稀疏性问题,提出一种基于多维特征聚类和用户评分的景点推荐算法。划分用户类别,使用基于属性权重的加权K-means聚类算法将表示用户特征的多维指标数值进行聚类;确定目标用户类别,引入用户的推荐可信度和质量可信度并形成评分可信度,将评分可信度和评分相似度结合平衡因子来计算用户之间的相似度,优化传统的相似度推荐算法。实验结果表明,该算法降低了数据的稀疏性,提高了推荐精度,具有更好的稳定性。 展开更多
关键词 多维特征 用户聚类 评分可信 评分相似度 景点推荐
在线阅读 下载PDF
基于符号数据与非负矩阵分解法的混合推荐算法 被引量:6
3
作者 郭均鹏 王启鹏 +1 位作者 宁静 李嫒嫒 《系统管理学报》 CSSCI 北大核心 2015年第3期372-378,共7页
针对现有推荐算法在处理海量数据时效率和精确度低下的问题,提出一种将基于内容的推荐算法与基于项目的协同过滤算法相结合的新的混合推荐算法。首先引入符号数据分析方法,使用模态符号数据对项目建模,同时针对评分矩阵的超高维及稀疏... 针对现有推荐算法在处理海量数据时效率和精确度低下的问题,提出一种将基于内容的推荐算法与基于项目的协同过滤算法相结合的新的混合推荐算法。首先引入符号数据分析方法,使用模态符号数据对项目建模,同时针对评分矩阵的超高维及稀疏性问题加入非负矩阵分解算法,对项目的特征矩阵进行有效"平滑",以此为基础计算项目之间的相似性,进而完成混合推荐。基于MOVEILENS数据的实验结果表明,本文提出的混合推荐算法与传统的基于项目的协同过滤算法相比,在相似性计算上具有更高的效率,同时在应对数据稀疏性及新用户问题时,具有更高的推荐精度。 展开更多
关键词 符号数据 混合推荐算法 评分相似度 非负矩阵分解
在线阅读 下载PDF
基于云模型的时间修正协同过滤推荐算法 被引量:7
4
作者 王晓堤 桑婧 《计算机工程与科学》 CSCD 北大核心 2012年第12期160-163,共4页
针对传统的协同过滤推荐系统存在的数据稀疏性和忽略时间影响的问题,本文提出了基于云模型的时间修正协同过滤推荐算法,利用云模型建立用户对项目特征属性的偏好度,并建立指数时间函数对项目的评分相似度沿时间维加以修正。算法采用美国... 针对传统的协同过滤推荐系统存在的数据稀疏性和忽略时间影响的问题,本文提出了基于云模型的时间修正协同过滤推荐算法,利用云模型建立用户对项目特征属性的偏好度,并建立指数时间函数对项目的评分相似度沿时间维加以修正。算法采用美国GroupLens项目组提供的数据集进行实验。结果表明,该算法使得项目的评分相似度度量更趋准确,系统推荐质量有较明显的提高。 展开更多
关键词 最近邻协同过滤推荐 云模型 项目的评分相似度 时间修正
在线阅读 下载PDF
User preferences-aware recommendation for trustworthy cloud services based on fuzzy clustering 被引量:1
5
作者 马华 胡志刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3495-3505,共11页
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon... The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario. 展开更多
关键词 trustworthy service service recommendation user preferences-aware fuzzy clustering
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部