期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
试论社区矫正评估对象的构建 被引量:3
1
作者 刘诗嘉 《河海大学学报(哲学社会科学版)》 2005年第3期18-21,共4页
社区矫正评估体系的构建对于我国社区矫正工作的开展具有重要意义,而评估对象内容和范围的确定是整个评估体系的基本组成部分。评估对象的确定是一个科学的过程,因此必须在一定的方法论指导下进行。美国的项目评估方法非常先进,可以作... 社区矫正评估体系的构建对于我国社区矫正工作的开展具有重要意义,而评估对象内容和范围的确定是整个评估体系的基本组成部分。评估对象的确定是一个科学的过程,因此必须在一定的方法论指导下进行。美国的项目评估方法非常先进,可以作为确定评估对象的方法论。现阶段我国社区矫正评估对象包括五个方面的内容,对这些内容进行细化,可以得出具体的评估对象。 展开更多
关键词 社区矫正评估体系 社区矫正评估对象 需求评估 过程评估 影响评估 评估可能性的评测
在线阅读 下载PDF
视觉图灵:从人机对抗看计算机视觉下一步发展 被引量:8
2
作者 黄凯奇 赵鑫 +1 位作者 李乔哲 胡世宇 《图学学报》 CSCD 北大核心 2021年第3期339-348,共10页
计算机视觉一直是人工智能研究的热点方向,经过近60年的发展,已经在算法、技术和应用等方面取得了巨大的进步。近十年来,以大数据、大算力为基础的深度学习进一步推动计算机视觉走向大模型时代,但其算法适应能力仍然和人类存在较大差距... 计算机视觉一直是人工智能研究的热点方向,经过近60年的发展,已经在算法、技术和应用等方面取得了巨大的进步。近十年来,以大数据、大算力为基础的深度学习进一步推动计算机视觉走向大模型时代,但其算法适应能力仍然和人类存在较大差距。本文从视觉任务评估评测(评测数据集、评测指标、评估方式)出发,对计算机视觉的发展进行了总结,对现存的依赖大数据学习的计算机视觉发展问题进行了梳理和分析,从人机对抗智能评测提出了计算机视觉下一步发展方向:视觉图灵。最后对视觉图灵发展方向进行了思考和讨论,探讨了未来研究可能的方向。 展开更多
关键词 计算机视觉 视觉图灵 评估评测 图灵测试 数据集
在线阅读 下载PDF
Objective measurement for image defogging algorithms 被引量:4
3
作者 郭璠 唐琎 蔡自兴 《Journal of Central South University》 SCIE EI CAS 2014年第1期272-286,共15页
Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One w... Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods. 展开更多
关键词 image defogging algorithm image assessment simulated foggy image fog density human visual perception
在线阅读 下载PDF
Integrating unascertained measurement and information entropy theory to assess blastability of rock mass 被引量:15
4
作者 周健 李夕兵 《Journal of Central South University》 SCIE EI CAS 2012年第7期1953-1960,共8页
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac... Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering. 展开更多
关键词 rock mass BLASTABILITY unascertained measurement (UM) model information entropy PREDICTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部