The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the de...The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.展开更多
An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the desig...An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.展开更多
Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sens...Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization d...In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization design of the screw body are carried out under the premise of not changing the original tooling.The double⁃shear test of YS-20 bar is carried out,and the ANSYS optimization design module is used to design 7×7×6,a total of 294,calculation cases of D1,D2,T,the three important dimension parameters of screw structure.The actual bearing state of screw composite structure is accurately simulated by using asymmetric contact model.Three comprehensive evaluations are established,and the calculation examples satisfying the conditions are evaluated comprehensively.The final results are T=12.2 mm,D1=16 mm,D2=2 mm.The stress verification and contact analysis are carried out for the final scheme and the bearing state and contact state optimized screw structure are obtained.展开更多
文摘The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.
文摘An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.
文摘Aim To raise the H-NE math model for designing engine radiators.Methods Thismodel was founded on multi-nonlinear regression technology,and the quadratic equatingmethod was used to smooth original data.Through the sensitivity analysis about radiatoroptimization designing,some major restraints were obtained.Results Type 1301C radiator wasoptimizingly renwed by use o this model,and the new radiator is more excellent than theold one in respect of the heat transfer factor and the manufacturing cost.Conclusion Theradiation performance can be improved,the area can be reduced,and the fitting scope can bewidened if this model is used in designing radiators.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
文摘In order to improve the safety of the battery of satellite side mounting,and prevent the screw from producing excess due to frequent assembly and disassembly,the YS-20 material replacement and structure optimization design of the screw body are carried out under the premise of not changing the original tooling.The double⁃shear test of YS-20 bar is carried out,and the ANSYS optimization design module is used to design 7×7×6,a total of 294,calculation cases of D1,D2,T,the three important dimension parameters of screw structure.The actual bearing state of screw composite structure is accurately simulated by using asymmetric contact model.Three comprehensive evaluations are established,and the calculation examples satisfying the conditions are evaluated comprehensively.The final results are T=12.2 mm,D1=16 mm,D2=2 mm.The stress verification and contact analysis are carried out for the final scheme and the bearing state and contact state optimized screw structure are obtained.