期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
再论人脑系统的记忆机制 被引量:8
1
作者 万文涛 《江西师范大学学报(哲学社会科学版)》 1999年第3期89-96,共8页
人脑是一个复杂的系统 ,它是以形成有序状态的形式短时记忆相应信息的 ;有序状态的特征决定了人脑系统中众多突触的最新生长层生长厚度的空间分布特征 ,也正是众多突触的最新生长层长时记忆了相应信息 ;人脑系统不仅具有短时记忆和长时... 人脑是一个复杂的系统 ,它是以形成有序状态的形式短时记忆相应信息的 ;有序状态的特征决定了人脑系统中众多突触的最新生长层生长厚度的空间分布特征 ,也正是众多突触的最新生长层长时记忆了相应信息 ;人脑系统不仅具有短时记忆和长时记忆功能 ,还能实现对语言、视听等信息的协同记忆和多重编码 ,实现对语言信息、自然信息、动作反应信息的过程化、网络化记忆 ;记忆的保持水平与隐序状态是否完全消退和突触生长的层层覆盖、新陈代谢、衰老、病变等因素有关 ;记忆信息的提取可以是直接的 ,也可以是间接的 。 展开更多
关键词 有序状态 短时记忆 长时记忆 多重编码 记忆网络化 记忆的保持 记忆的提取
在线阅读 下载PDF
Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM
2
作者 WANG Yuxi HUANG Lyuwen DUAN Xiaolin 《智慧农业(中英文)》 2025年第3期143-159,共17页
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha... [Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks. 展开更多
关键词 canopy temperature temperature prediction LSTM RIME VMD
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部