目前,人脸美丽预测研究面临模型泛化能力欠佳、数据量不足、以及易于过拟合等问题。十字绣网络(Cross-Stitch Network)通过激活多个网络,进行端到端的学习,自动决定共享层,但忽略了图像信息主次问题。因此,本文对十字绣网络进行改进,将...目前,人脸美丽预测研究面临模型泛化能力欠佳、数据量不足、以及易于过拟合等问题。十字绣网络(Cross-Stitch Network)通过激活多个网络,进行端到端的学习,自动决定共享层,但忽略了图像信息主次问题。因此,本文对十字绣网络进行改进,将其部分层网络更换为自注意力(Self-Attention)模块与长短时记忆(Long Short Term Memory,LSTM)模块,从而实现层与层之间、模块与模块之间的参数共享。首先,进行图像预处理,包括统一尺寸、人脸对齐、图像增强、归一化和图像剪裁等;其次,初始化构建的改进十字绣网络,并将层与层之间的共享称之为“微共享”,将模块与模块之间的共享称之为“模块共享”;最后,对训练模型进行测试。实验结果表明,采用改进十字绣网络,人脸美丽预测取得63.95%的准确率,高于常规方法最高准确率;为多任务学习提供了一种新思路。展开更多
异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文...异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的 .在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果.展开更多
文摘目前,人脸美丽预测研究面临模型泛化能力欠佳、数据量不足、以及易于过拟合等问题。十字绣网络(Cross-Stitch Network)通过激活多个网络,进行端到端的学习,自动决定共享层,但忽略了图像信息主次问题。因此,本文对十字绣网络进行改进,将其部分层网络更换为自注意力(Self-Attention)模块与长短时记忆(Long Short Term Memory,LSTM)模块,从而实现层与层之间、模块与模块之间的参数共享。首先,进行图像预处理,包括统一尺寸、人脸对齐、图像增强、归一化和图像剪裁等;其次,初始化构建的改进十字绣网络,并将层与层之间的共享称之为“微共享”,将模块与模块之间的共享称之为“模块共享”;最后,对训练模型进行测试。实验结果表明,采用改进十字绣网络,人脸美丽预测取得63.95%的准确率,高于常规方法最高准确率;为多任务学习提供了一种新思路。
文摘异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的 .在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果.