In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
文摘采用UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学建立钴胺素C(cblC)缺乏症的临床表型系统表征和预测模型,利用尝试解开其复杂性。基于UHPLC-QE-Orbitrap MS技术在正、负模式下采集的血液非靶向代谢组学图谱,利用数据驱动网络算法Connect the Dots(CTD)快速搜索高连通的扰动代谢物,化学计量学算法学习其组别间复杂微小变化模式。通过对两种临床表型(癫痫和代谢综合征)的研究,结果表明CTD算法识别出的扰动代谢物子集展示出高度的临床表型特异性,且涉及的富集通路扰动均被报道与癫痫和代谢综合征的致病机制密切相关。进一步,CTD算法能够量度高连通扰动代谢物间的协变信息,构建主要疾病模块系统地表征癫痫和代谢综合征的复杂致病机制。识别出的扰动代谢物作为特征变量集,采用5-折交叉验证,偏最小二乘判别分析、支持向量机和随机森林的受试者工作特征曲线下面积预测均值分别为0.849、0.897和0.909(癫痫),0.889、0.931和0.921(代谢综合征),马修斯相关系数预测均值分别为0.667、0.668和0.723(癫痫),0.686、0.696和0.787(代谢综合征)。上述结果表明了提出的计算方法在揭示cblC缺乏症的临床表型复杂性和指导其个性化诊断策略方面的有效性。
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.