期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
因素表示的信息空间与广义概率逻辑 被引量:6
1
作者 汪培庄 周红军 +1 位作者 何华灿 钟义信 《智能系统学报》 CSCD 北大核心 2019年第5期843-852,共10页
国内外近年来所提出的广义概率逻辑对于人工智能的发展有重要意义。能否反映变换演化的实际场景,使逻辑判断能够灵活变通,这是广义概率逻辑发展的关键。为了解决这一问题,本文的目是以信息空间作为逻辑与实际场景的接口。有了这个接口,... 国内外近年来所提出的广义概率逻辑对于人工智能的发展有重要意义。能否反映变换演化的实际场景,使逻辑判断能够灵活变通,这是广义概率逻辑发展的关键。为了解决这一问题,本文的目是以信息空间作为逻辑与实际场景的接口。有了这个接口,逻辑判断就能反映变幻莫测的实际场景。本文的方法是用因素空间来定义表现论域以形成新的信息空间,将谓词中的变元取为因素,在已有的逻辑系统中加上本文所提出的背景公理,所有的推理都是在一定背景之下的推理,不同的背景会推出不同的结论。结果是新的逻辑既能维系Stone表示定理的表现要求,又能变得更加灵活有效。结论能使广义概率逻辑更有效地服务于人工智能。为了配合机制主义人工智能的需要,本文还特别提出了语法-语用对接的方法和目标驱动的逆向推理设想,最后为泛逻辑的3种连续算子对进行了数学证明。 展开更多
关键词 机制主义人工智能 逻辑 计量概率逻辑 因素空间 模糊集 可能性空间 谓词演算 随机集落影
在线阅读 下载PDF
Lukasiewicz命题逻辑中命题的Choquet积分真度理论 被引量:10
2
作者 周红军 折延宏 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2327-2333,共7页
将已有的不确定性测度概念引入到了Lukasiewicz命题逻辑中的全体赋值之集上,然后利用McNaughton函数关于该不确定性测度的Choquet积分定义了命题的Choquet积分真度概念.证明了当赋值空间上的不确定性测度满足有限可加性时Choquet积分真... 将已有的不确定性测度概念引入到了Lukasiewicz命题逻辑中的全体赋值之集上,然后利用McNaughton函数关于该不确定性测度的Choquet积分定义了命题的Choquet积分真度概念.证明了当赋值空间上的不确定性测度满足有限可加性时Choquet积分真度函数就具有良好性质,由此可诱导出命题集上的一个伪距离,进而可建立逻辑度量空间并展开程度化推理,特别是证明了当赋值空间上的不确定性测度取为Borel概率测度时Choquet积分真度函数就退化为概率计量逻辑中的Borel概率真度函数.本文是已有命题逻辑概率计量化工作的继续与深入,为表示逻辑命题间不确定性的非线性关系提供了一种推理框架. 展开更多
关键词 Lukasiewicz命题逻辑 概率计量逻辑 Choquet积分真度
在线阅读 下载PDF
NMG-代数中同态核的结构刻画
3
作者 周红军 马琴 兰淑敏 《软件学报》 EI CSCD 北大核心 2017年第10期2539-2547,共9页
逻辑代数上的Bosbach态与Rie?an态是经典概率论中Kolmogorov公理的两种不同方式的多值化推广,也是概率计量逻辑中语义计量化方法的代数公理化,是非经典数理逻辑领域中的重要研究分支.现已证明具有Glivenko性质的逻辑代数上的Bosbach态与... 逻辑代数上的Bosbach态与Rie?an态是经典概率论中Kolmogorov公理的两种不同方式的多值化推广,也是概率计量逻辑中语义计量化方法的代数公理化,是非经典数理逻辑领域中的重要研究分支.现已证明具有Glivenko性质的逻辑代数上的Bosbach态与Rie?an态等价,并且逻辑代数的Glivenko性质是研究态算子的构造和存在性的重要工具,因而是态理论中的研究热点之一.研究了NMG-代数基于核算子的Glivenko性质,证明NMG-代数具有核基Glivenko性质的充要条件是该核算子是从此NMG-代数到其像集代数的同态,并给出NMG-代数中同态核的结构刻画.这里,NMG-代数是刻画序和三角模([0,1 2],T_(NM)),([1 2,1],T_M)的逻辑系统NMG的语义逻辑代数. 展开更多
关键词 概率计量逻辑 NMG-代数 Glivenko定理 同态核
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部