Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical...Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.展开更多
[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or def...[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition.展开更多
To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,a...To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.展开更多
Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the ex...Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.展开更多
Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling ...Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma...The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.展开更多
A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD....A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micr...In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.展开更多
For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils foll...For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils followed power-law failure criterion.In this work,deep buried highway tunnel with large section was taken as objective,and the basic expressions of collapse shape and region were deduced for the highway tunnels in soils,based on kinematical approach and power-law failure criterion.In order to see the effectiveness of the proposed expressions,the solutions presented in this work agree well with previous results if the nonlinear failure criterion is reduced to a linear Mohr-Coulomb failure criterion.The present results are compared with practical projects and tunnel design code.The numerical results show that the height and width of tunnel collapse are greatly affected by the nonlinear criterion for the tunnel in soil.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
文摘Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.
文摘[Objective]Fish pose estimation(FPE)provides fish physiological information,facilitating health monitoring in aquaculture.It aids decision-making in areas such as fish behavior recognition.When fish are injured or deficient,they often display abnormal behaviors and noticeable changes in the positioning of their body parts.Moreover,the unpredictable posture and orientation of fish during swimming,combined with the rapid swimming speed of fish,restrict the current scope of research in FPE.In this research,a FPE model named HPFPE is presented to capture the swimming posture of fish and accurately detect their key points.[Methods]On the one hand,this model incorporated the CBAM module into the HRNet framework.The attention module enhanced accuracy without adding computational complexity,while effectively capturing a broader range of contextual information.On the other hand,the model incorporated dilated convolution to increase the receptive field,allowing it to capture more spatial context.[Results and Discussions]Experiments showed that compared with the baseline method,the average precision(AP)of HPFPE based on different backbones and input sizes on the oplegnathus punctatus datasets had increased by 0.62,1.35,1.76,and 1.28 percent point,respectively,while the average recall(AR)had also increased by 0.85,1.50,1.40,and 1.00,respectively.Additionally,HPFPE outperformed other mainstream methods,including DeepPose,CPM,SCNet,and Lite-HRNet.Furthermore,when compared to other methods using the ornamental fish data,HPFPE achieved the highest AP and AR values of 52.96%,and 59.50%,respectively.[Conclusions]The proposed HPFPE can accurately estimate fish posture and assess their swimming patterns,serving as a valuable reference for applications such as fish behavior recognition.
基金Project(60604011) supported by the National Natural Science Foundation of China
文摘To improve the accuracy of strapdown inertial navigation system(SINS) for long term applications,the rotation technique is employed to modulate the errors of the inertial sensors into periodically varied signals,and,as a result,to suppress the divergence of SINS errors.However,the errors of rotation platform will be introduced into SINS and might affect the final navigation accuracy.Considering the disadvantages of the conventional navigation computation scheme,an improved computation scheme of the SINS using rotation technique is proposed which can reduce the effects of the rotation platform errors.And,the error characteristics of the SINS with this navigation computation scheme are analyzed.Theoretical analysis,simulations and real test results show that the proposed navigation computation scheme outperforms the conventional navigation computation scheme,meanwhile reduces the requirement to the measurement accuracy of rotation angles.
基金Project(2012zzts082)supported by the Fundamental Research Funds of Central South University,ChinaProject(02JJY2005)supported by the Natural Science Foundation of Hunan Province,ChinaProject(20130843023)supported by China Scholarship Council
文摘Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Program of Hunan Province,China
文摘Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
基金Project(51276131)supported by the National Natural Science Foundation of ChinaProject(ZRZ0316)supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010025)supported by the Morning Glory Project of Wuhan Science and Technology Bureau,China
文摘The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.
基金Project(20100481323) supported by China Postdoctoral Science FoundationProjects(61201133,61172055,61072067,51278058)supported by the National Natural Science Foundation of China+4 种基金Project(NCET-11-0691) supported by the Program for New Century Excellent Talents in UniversityProject(11105) supported by the Foundation of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing,ChinaProject(B08038) supported by the "111" Project,ChinaProject(K5051301011) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(CX12178(6)) supported by the Xian Municipal Technology Transfer Promotion funds,China
文摘A critical safe distance(CSD)model in V2V(vehicle-to-vehicle)communication systems was proposed to primarily enhance driving safety by disseminating warning notifications to vehicles when they approach calculated CSD.By elaborately analyzing the vehicular movement features especially when braking,our CSD definition was introduced and its configuration method was given through dividing radio range into different communication zones.Based on our definition,the needed message propagation delay was also derived which could be used to control the beacon frequency or duration.Next,the detailed CSD expressions were proposed in different mobility scenarios by fully considering the relative movement status between the front and rear vehicles.Numerical results show that our proposed model could provide reasonable CSD under different movement scenarios which eliminates the unnecessary reserved inter-vehicle distance and guarantee the safety at the same time.The compared time-headway model always shows a smaller CSD due to focusing on traffic efficiency whereas the traditional braking model generally outputs a larger CSD because it assumes that the following car drives with a constant speed and did not discuss the scenario when the leading car suddenly stops.Different from these two models,our proposed model could well balances the requirements between driving safety and traffic throughput efficiency by generating a CSD in between the values of the two models in most cases.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Projects(50975092,50805052,U0834002) supported by the National Natural Science Foundation of ChinaProject(9151030101000007) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2009ZZ0041) supported by the Fundamental Research Funds for the Central Universities in China
文摘In order to support the functional design and simulation and the final fabrication processes for functional surfaces,it is necessary to obtain a multi-scale modelling approach representing both macro geometry and micro details of the surface in one unified model.Based on the fractal geometry theory,a synthesized model is proposed by mathematically combining Weierstrass-Mandelbrot fractal function in micro space and freeform CAGD model in macro space.Key issues of the synthesis,such as algorithms for fractal interpolation of freeform profiles,and visualization optimization for fractal details,are addressed.A prototype of the integration solution is developed based on the platform of AutoCAD's Object ARX,and a few multi-scale modelling examples are used as case studies.With the consistent mathematic model,multi-scale surface geometries can be represented precisely.Moreover,the visualization result of the functional surfaces shows that the visualization optimization strategies developed are efficient.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the National Natural Science Foundation of China
文摘For different kinds of rocks,the collapse range of tunnel was studied in the previously published literature.However,some tunnels were buried in soils,and test data showed that the strength envelopes of the soils followed power-law failure criterion.In this work,deep buried highway tunnel with large section was taken as objective,and the basic expressions of collapse shape and region were deduced for the highway tunnels in soils,based on kinematical approach and power-law failure criterion.In order to see the effectiveness of the proposed expressions,the solutions presented in this work agree well with previous results if the nonlinear failure criterion is reduced to a linear Mohr-Coulomb failure criterion.The present results are compared with practical projects and tunnel design code.The numerical results show that the height and width of tunnel collapse are greatly affected by the nonlinear criterion for the tunnel in soil.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.