By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rig...A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.展开更多
Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire t...Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.展开更多
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
文摘A structure relaxation model based on the empirical electron theory of solids and molecules is developed to compute the diffusion active energies of C, N in γFe. First, adding a restriction, the lattice maintains rigidity when solute atom migrates to the saddle point. In this step, the hybridization classes of every atom do not change. Then, the restriction is loosed and the atoms are relaxed under the coulomb repulsive forces. It is supposed that the energy needed in the first step would be compensated partly by the second step. In this way, the diffusion active energies of C, N in γFe are computed. Compared with the experiment data, the relative errors are less than 5%, which are good results in the computation of activation energy of diffusion.
基金Financial support for this work provided by the National"Eleventh Five-Year" Key Scientific and Technological Support[Program (No. 2007BAK22B04)2008 independent task (No.SKLCRSM08B12)
文摘Various physical parameters, including gas concentrations (O2, CO, CH4, and H2) and temperatures at dif- ferent air velocities, were determined for full scale wood fires in the Chongqing Coal Research Institute fire test tunnel. Both experimental measurements and numerical simulations are discussed. The numer- ical analysis was performed with the computational fluid dynamics software package ''FLUENT''. The results show that the experimental data agree with the simulation results. The results verify that Roberts' theory of burning is correct. They also prove that the air velocity is the key factor that determines the type of combustion. Also, it is shown that secondary disasters are unlikely for oxygen rich combustion with a limited fire load.