期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
料层厚度对四层带式烘干机内气流分布的影响 被引量:3
1
作者 黄敏凤 薛东晓 +4 位作者 张鹏飞 程春 奚小波 张剑锋 陈博 《南方农机》 2021年第12期10-12,共3页
带式烘干机是饲料烘干过程中常用的设备,用于降低饲料含水率。料层厚度是影响饲料含水率的重要参数之一,饲料含水率又与四层带式烘干机内部气流分布有关。为此,笔者设计了一种新型四层带式烘干机,研究了三种料层厚度参数(20 mm,30 mm,40... 带式烘干机是饲料烘干过程中常用的设备,用于降低饲料含水率。料层厚度是影响饲料含水率的重要参数之一,饲料含水率又与四层带式烘干机内部气流分布有关。为此,笔者设计了一种新型四层带式烘干机,研究了三种料层厚度参数(20 mm,30 mm,40 mm)对四层带式烘干机内部气流场的影响,并建立了计算流体力学(CFD)模型,为选择合适的料层厚度参数和烘干工艺提供了理论依据。研究表明,料层厚度越大,烘干机内气流速度值越小;气流速度值在穿透料层后减小。 展开更多
关键词 四层带式烘干机 料层厚度 分布 计算流体流力学
在线阅读 下载PDF
南水北调工程邳州站竖井贯流泵装置进出水流态分析 被引量:48
2
作者 徐磊 陆林广 +1 位作者 陈伟 王刚 《农业工程学报》 EI CAS CSCD 北大核心 2012年第6期50-56,I0005,I0006,共9页
为揭示竖井贯流泵装置内、外特性之间的联系,完善其优化水力设计理论,该文采用三维流动数值计算的方法,对南水北调东线一期工程邳州站泵装置流道表面的流场和垂直于x、y、z3个方向剖面的流场进行了多视角的详尽剖析,并分别采用透明流道... 为揭示竖井贯流泵装置内、外特性之间的联系,完善其优化水力设计理论,该文采用三维流动数值计算的方法,对南水北调东线一期工程邳州站泵装置流道表面的流场和垂直于x、y、z3个方向剖面的流场进行了多视角的详尽剖析,并分别采用透明流道模型试验和透明泵装置模型试验的方法检验了流态数值模拟结果。由数值计算和模型试验结果可得:前置竖井贯流泵装置进水流道内的流态均匀平顺、层次分明;出水流道内的水流在螺旋状运动中平缓扩散,流道内无任何脱流或旋涡等不良流态;其水力性能优异的主要原因在于其具有优异的内特性。邳州站前置竖井贯流泵装置主要工况点的泵装置效率超过83%、临界空化余量小于5m,水力性能优异。该文可为低扬程泵站的水力设计提供有益参考。 展开更多
关键词 计算流体力学 进水 出水 水力性能 竖井贯泵装置
在线阅读 下载PDF
Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow 被引量:3
3
作者 刘燕平 欧阳陈志 +1 位作者 江清柏 梁波 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3970-3976,共7页
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo... Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB. 展开更多
关键词 lithium-ion battery thermal management reciprocating air-flow temperature difference orthogonal optimization SIMULATION
在线阅读 下载PDF
CFD investigation of effect of nanofluid filled Trombe wall on 3D convective heat transfer 被引量:3
4
作者 ALBAQAWY Ghazy MESLOUB Abdelhakim KOLSI Lioua 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3569-3579,共11页
A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are consi... A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field. 展开更多
关键词 Trombe wall CNT-nanofluid 3D natural convection CFD heat transfer
在线阅读 下载PDF
Combined effects of local curvature and elasticity of an isothermal wall for jet impingement cooling under magnetic field effects 被引量:2
5
作者 SELİMEFENDİGİL Fatih ÇOĞAN Mehmet ÖZTOP Hakan F. 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3534-3544,共11页
The aim of this study is to examine the effects of local curvature and elastic wall effects of an isothermal hot wall for the purpose of jet impingement cooling performance.Finite element method was used with ALE.Diff... The aim of this study is to examine the effects of local curvature and elastic wall effects of an isothermal hot wall for the purpose of jet impingement cooling performance.Finite element method was used with ALE.Different important parametric effects such as Re number(between 100 and 700),Ha number(between 0 and 20),elasticity(between 104 and 109),curvature of the surface(elliptic,radius ratio between 1 and 0.25) and nanoparticle volume fraction(between 0 and 0.05) on the cooling performance were investigated numerically.The results showed that the average Nu number enhances for higher Hartmann number,higher values of elastic modulus of partly flexible wall and higher nanoparticle volume fraction.When the magnetic field is imposed at the highest strength,there is an increase of3.85% in the average Nu for the curved elastic wall whereas it is 89.22% for the hot part above it,which is due to the vortex suppression effects.Nanoparticle inclusion in the base fluid improves the heat transfer rate by about 27.6% in the absence of magnetic field whereas it is 20.5% under the effects of magnetic field at Ha=20.Curvature effects become important for higher Re numbers and at Re=700,there is 14.11% variation in the average Nu between the cases with the lowest and highest radius ratio.The elastic wall effects on the heat transfer are reduced with the increased curvature of the bottom wall. 展开更多
关键词 jet impingement nanoparticles elastic wall MHD CFD curved wall
在线阅读 下载PDF
Multi-physics analysis of permanent magnet tubular linear motors under severe volumetric and thermal constraints 被引量:2
6
作者 李方 叶佩青 张辉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1690-1699,共10页
Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of... Permanent magnet tubular linear motors(TLMs) arranged in multiple rows and multiple columns used for a radiotherapy machine were studied. Due to severe volumetric and thermal constraints, the TLMs were at high risk of overheating. To predict the performance of the TLMs accurately, a multi-physics analysis approach was proposed. Specifically, it considered the coupling effects amongst the electromagnetic and the thermal models of the TLMs, as well as the fluid model of the surrounding air. To reduce computation cost, both the electromagnetic and the thermal models were based on lumped-parameter methods. Only a minimum set of numerical computation(computational fluid dynamics, CFD) was performed to model the complex fluid behavior. With the proposed approach, both steady state and transient state temperature distributions, thermal rating and permissible load can be predicted. The validity of this approach is verified through the experiment. 展开更多
关键词 tubular linear motor MULTI-PHYSICS COUPLING lumped-parameter temperature prediction
在线阅读 下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:4
7
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics (CFD) simulation flotation cell gas-liquid two-phases flow
在线阅读 下载PDF
三体船压力跃变的喷水推进推力数值方法 被引量:2
8
作者 张雷 张佳宁 +2 位作者 尚宇宸 董国祥 陈伟民 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第9期1582-1588,共7页
为实现喷水推进船舶推力的快速预报,本文提出了一种通过求解兴波阻力、粘性阻力和进流面物理参数实现喷水推进推力快速迭代求解计算的数值方法。本文依据船舶受力的平衡方程,在喷水推进流道内采用压力跃变法,建立船舶喷水推进推力计算... 为实现喷水推进船舶推力的快速预报,本文提出了一种通过求解兴波阻力、粘性阻力和进流面物理参数实现喷水推进推力快速迭代求解计算的数值方法。本文依据船舶受力的平衡方程,在喷水推进流道内采用压力跃变法,建立船舶喷水推进推力计算数学模型。采用边界元法对兴波势进行求解,通过对船体加长处理,解决兴波阻力计算中流道面元与自由液面面元互相穿透导致的影响系数矩阵异常等数值问题。运用湍流边界层理论计算控制体进流面的速度、压力和进流面边界层影响系数。以三体船船模为研究对象,将数值计算结果与粘流计算流体力学喷水推进自航结果进行对比分析,结果表明:该方法预报三体船喷水推进系统推力相对误差小于5%,能够快速有效预报三体船喷水推进推力性能及推力减额,具有较强的理论研究和工程实际应用价值。 展开更多
关键词 喷水推进推力 压力跃变 边界元法 边界层理论 三体船 计算流体力学 自航 推力减额
在线阅读 下载PDF
Numerical simulation and optimization of red mud separation thickener with self-dilute feed 被引量:4
9
作者 周天 李茂 +1 位作者 周谦 周孑民 《Journal of Central South University》 SCIE EI CAS 2014年第1期344-350,共7页
In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed... In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system.The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field.Optimization experiments on feed well and self-dilute system were also carried out,and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates' formation and improve the red mud settling speed.Furthermore,the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation. 展开更多
关键词 separation thickener self-dilute feed system numerical simulation optimization experiments computational fluiddynamics
在线阅读 下载PDF
Numerical computation and analysis of unsteady viscous flow around autonomous underwater vehicle with propellers based on sliding mesh 被引量:4
10
作者 高富东 潘存云 韩艳艳 《Journal of Central South University》 SCIE EI CAS 2012年第4期944-952,共9页
The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheele... The flexible transmission shaft and wheel propeller are combined as the kinetic source equipment, which realizes the nmlti-motion modes of the autonomous underwater vehicle (AUV) such as vectored thruster and wheeled movement. In order to study the interactional principle between the hull and the wheel propellers while the AUV navigating in water, the computational fluid dynamics (CFD) method is used to simulate numerically the unsteady viscous flow around AUV with propellers by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and pressure with splitting of operators (PISO) algorithm based on sliding mesh. The hydrodynamic parameters of AUV with propellers such as resistance, pressure and velocity are got, which reflect well the real ambient flow field of AUV with propellers. Then, the semi-implicit method for pressure-linked equations (SIMPLE) algorithm is used to compute the steady viscous flow field of AUV hull and propellers, respectively. The computational results agree well with the experimental data, which shows that the numerical method has good accuracy in the prediction of hydrodynamic performance. The interaction between AUV hull and wheel propellers is predicted qualitatively and quantitatively by comparing the hydrodynamic parameters such as resistance, pressure and velocity with those from integral computation and partial computation of the viscous flow around AUV with propellers, which provides an effective reference to the shady on noise and vibration of AUV hull and propellers in real environment. It also provides technical support for the design of new AUVs. 展开更多
关键词 computational fluid dynamics sliding mesh wheel propeller autonomous underwater vehicle viscous flow field
在线阅读 下载PDF
Design of a continuously variable Mach-number nozzle 被引量:1
11
作者 郭善广 王振国 赵玉新 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期522-528,共7页
A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozz... A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Machnumbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of3.0<Ma<4.0, was shown to illustrate the present design technique. To fully validate the present design method, computational fluid dynamics(CFD) analyses were carried out to study the flow quality in the test area of the nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running. 展开更多
关键词 wind tunnel variable Mach-number nozzle flow quality method of characteristics numerical validation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部