基于计算流体力学-离散单元法(computation fluid dynamics-discrete element method,CFD-DEM)对含有印染污泥和煤粉颗粒的埋管流化床内气固两相流动力学特性进行了模拟研究。对流化过程中颗粒的混合指数、速度分布、数量比、固含率分...基于计算流体力学-离散单元法(computation fluid dynamics-discrete element method,CFD-DEM)对含有印染污泥和煤粉颗粒的埋管流化床内气固两相流动力学特性进行了模拟研究。对流化过程中颗粒的混合指数、速度分布、数量比、固含率分布、平均动能分布进行了统计和讨论。实验结果表明,初始上污泥下煤粉填充时,随着气流速度的增大,加剧了煤粉污泥颗粒的分离,过大的气流速度会出现局部完全分离现象。当气流速度达到3.0 m·s^(-1)时,床内煤粉污泥混合填充相较于分层填充时不易发生分离现象。改变流化床内2种颗粒数量的比例时,发现增加煤粉数量可以使污泥分布更加均匀,埋管上方颗粒的平均动能与下方相差较大。展开更多
严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynami...严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynamics-computational fluid dynamics, DEM-MFBD-CFD)耦合分析法,建立车厢底板结冰脱落击打应答器模型,并借助风洞和现场试验结果,验证了模型的可靠性;基于建立的分析模型研究不同列车速度、风压变化、冰块质量等因素对应答器击打的受力影响。结果表明:应答器受到的最大应力随列车运行速度呈现幂函数增长关系,当行车速度增大到350 km/h时,最大应力达15.591 MPa,约为150 km/h时的3.5倍;且随冰块质量增加应答器最大应力呈现先迅速增加后缓慢增长趋势;当横风风速为5~20 m/s作用时,应答器表面所受到的最大应力相差不大,表明横风对冰雪击打应答器作用可忽略不计;为减小冰雪飞溅击打应答器危害,可采取除融雪手段、列车降速等措施。展开更多