为实现占据多个流体网格的大颗粒在流场中运动的仿真,基于计算流体力学和离散单元法耦合(computational fluid dy namics-discrete element mothod,CFD-DEM),提出了一种新的数值方法。使用黏结颗粒模型将大颗粒近似表示为多个小球形颗...为实现占据多个流体网格的大颗粒在流场中运动的仿真,基于计算流体力学和离散单元法耦合(computational fluid dy namics-discrete element mothod,CFD-DEM),提出了一种新的数值方法。使用黏结颗粒模型将大颗粒近似表示为多个小球形颗粒黏结而成,基于非解析CFD-DEM方法计算流体对每个小球颗粒的作用力,将所有小球颗粒运动参数的平均值用于描述整个黏结颗粒的运动状态。通过黏性流体中球形大颗粒的沉降运动模拟,比较仿真结果与相关实验数据,结果表明:该方法不仅能准确模拟球形大颗粒的沉降运动,而且与浸没边界法相比计算效率更高。与传统的解析CFD-DEM方法相比,此方法还可以方便且准确地模拟三维情况下非球形大颗粒在流场中的运动。展开更多
采用离散单元法模型对二维提升管内气固流动特性进行了数值模拟。利用标准k-ε模型模拟气相的湍流流动,考虑了颗粒间的van der Waals力和滚动摩擦的作用。通过对颗粒和气体流动行为的分析,得到了颗粒浓度、速度、温度及气体速度等的分布...采用离散单元法模型对二维提升管内气固流动特性进行了数值模拟。利用标准k-ε模型模拟气相的湍流流动,考虑了颗粒间的van der Waals力和滚动摩擦的作用。通过对颗粒和气体流动行为的分析,得到了颗粒浓度、速度、温度及气体速度等的分布,研究了表观气速和颗粒循环速率对颗粒流动的影响。结果显示:颗粒在提升管内呈现边壁浓、中心稀的环核流动及上稀下浓的流动结构;气固两相都存在一定程度的返混现象;增加表观气速,使颗粒浓度降低、速度增大,颗粒分布更均匀;增加颗粒循环速率,使颗粒浓度增大,而颗粒速度对颗粒循环速率的变化不敏感,颗粒分布的不均匀性更强。模拟结果与文献中实验定性吻合。展开更多
经过三十余年的发展,离散单元法(discrete element method,DEM)已经发展成为一种广泛应用于过程工程领域中颗粒体系研究的数值方法,特别是将DEM与计算流体力学(computational fluid dynamics,CFD)相结合形成的CFD-DEM耦合方法,已经在流...经过三十余年的发展,离散单元法(discrete element method,DEM)已经发展成为一种广泛应用于过程工程领域中颗粒体系研究的数值方法,特别是将DEM与计算流体力学(computational fluid dynamics,CFD)相结合形成的CFD-DEM耦合方法,已经在流态化研究领域得到广泛应用。首先对DEM模型进行了综述,包括DEM模型的基本原理、颗粒形状模型、接触力模型、非接触力模型、流体作用力模型等;然后对CFD-DEM耦合方法及其在流态化领域的一些主要应用进行了介绍,包括在流化床、气力输送以及过程工程领域里的一些其他应用。最后对DEM模型以及CFD-DEM耦合方法的发展趋势进行了预测,希望能促进DEM方法的发展,并推动其在过程工程领域中的应用。展开更多
文摘为实现占据多个流体网格的大颗粒在流场中运动的仿真,基于计算流体力学和离散单元法耦合(computational fluid dy namics-discrete element mothod,CFD-DEM),提出了一种新的数值方法。使用黏结颗粒模型将大颗粒近似表示为多个小球形颗粒黏结而成,基于非解析CFD-DEM方法计算流体对每个小球颗粒的作用力,将所有小球颗粒运动参数的平均值用于描述整个黏结颗粒的运动状态。通过黏性流体中球形大颗粒的沉降运动模拟,比较仿真结果与相关实验数据,结果表明:该方法不仅能准确模拟球形大颗粒的沉降运动,而且与浸没边界法相比计算效率更高。与传统的解析CFD-DEM方法相比,此方法还可以方便且准确地模拟三维情况下非球形大颗粒在流场中的运动。
文摘采用离散单元法模型对二维提升管内气固流动特性进行了数值模拟。利用标准k-ε模型模拟气相的湍流流动,考虑了颗粒间的van der Waals力和滚动摩擦的作用。通过对颗粒和气体流动行为的分析,得到了颗粒浓度、速度、温度及气体速度等的分布,研究了表观气速和颗粒循环速率对颗粒流动的影响。结果显示:颗粒在提升管内呈现边壁浓、中心稀的环核流动及上稀下浓的流动结构;气固两相都存在一定程度的返混现象;增加表观气速,使颗粒浓度降低、速度增大,颗粒分布更均匀;增加颗粒循环速率,使颗粒浓度增大,而颗粒速度对颗粒循环速率的变化不敏感,颗粒分布的不均匀性更强。模拟结果与文献中实验定性吻合。
文摘经过三十余年的发展,离散单元法(discrete element method,DEM)已经发展成为一种广泛应用于过程工程领域中颗粒体系研究的数值方法,特别是将DEM与计算流体力学(computational fluid dynamics,CFD)相结合形成的CFD-DEM耦合方法,已经在流态化研究领域得到广泛应用。首先对DEM模型进行了综述,包括DEM模型的基本原理、颗粒形状模型、接触力模型、非接触力模型、流体作用力模型等;然后对CFD-DEM耦合方法及其在流态化领域的一些主要应用进行了介绍,包括在流化床、气力输送以及过程工程领域里的一些其他应用。最后对DEM模型以及CFD-DEM耦合方法的发展趋势进行了预测,希望能促进DEM方法的发展,并推动其在过程工程领域中的应用。