The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed...In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system.The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field.Optimization experiments on feed well and self-dilute system were also carried out,and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates' formation and improve the red mud settling speed.Furthermore,the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.展开更多
The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Para...The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.展开更多
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
基金Project(50876116)supported by the National Natural Science Foundation of China
文摘In order to acquire the flow pattern and investigate the settling behavior of the red mud in the separation thickener,computational fluid dynamics(CFD),custom subroutines and agglomerates settling theory were employed to simulate the three-dimensional flow field in an industrial scale thickener with the introduction of a self-dilute feed system.The simulation results show good agreement with the measurement onsite and the flow patterns of the thickener are presented and discussed on both velocity and concentration field.Optimization experiments on feed well and self-dilute system were also carried out,and indicate that the optimal thickener system can dilute the solid concentration in feed well from 110 g/L to 86 g/L which would help the agglomerates' formation and improve the red mud settling speed.Furthermore,the additional power of recirculation pump can be saved and flocculants dosage was reduced from 105g/t to 85g/t in the operation.
基金Project(50475106)supported by the National Natural Science Foundation of China
文摘The flow between a grooved and a flat plate was presented to investigate the effects of groove on the behavior of hydro-viscous drive. The flow was solved by using computational fluid dynamics (CFD) code, Fluent. Parameters related to the flow, such as velocity, pressure, temperature, axial force and viscous torque, are obtained. The results show that pressure at the upstream notch is negative, pressure at the downstream notch is positive and pressure along the film thickness is almost the same. Dynamic pressure peak decreases as groove depth or groove number increases, but increases as output rotary speed increases. Consequently, the groove depth is suggested to be around 0.4 mm. Both the groove itself and groove parameters (i.e. groove depth, groove number) have little effect on the flow temperature. Circumferential pressure gradient induced by the groove weakens the viscous torque on the grooved plate (driven plate) greatly. It has little change as the groove depth increases. However, it decreases dramatically as the groove number increases. The experiment results show that the trend of experimental temperature and pressure are the same with numerical results. And the output rotary speed also has relationship with input flow rate and flow temperature.