Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and soft...Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.展开更多
Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
基金Projects(61202004,61272084)supported by the National Natural Science Foundation of ChinaProjects(2011M500095,2012T50514)supported by the China Postdoctoral Science Foundation+2 种基金Projects(BK2011754,BK2009426)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(12KJB520007)supported by the Natural Science Fund of Higher Education of Jiangsu Province,ChinaProject(yx002001)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.