Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduct...Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.展开更多
FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literatu...FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literature seldom exploit how and why they could affect the system.This paper aims to study the impacts of these three parameters,and the method of how to choose optimal values.The complete rules for choosing the monitored instructions based on necessary and sufficient condition are proposed.How to select the optimal threshold based on Bayesian binary signal detection principal is also proposed.Meanwhile,the time sequence model of monitoring is constructed and the calculation of the optimal waiting interval is specified.Extensive experiments are conducted on RSA implemented with binary square-and-multiply algorithm.The results show that the average success rate of full RSA key recovery is89.67%.展开更多
This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
文摘Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.
基金supported by National Natural Science Foundation of China (No.61472357,No.61309021,No.61272491, No.61173191)the Major State Basic Research Development Program(973 Plan) of China under the grant 2013CB338004
文摘FLUSH+RELOAD attack is recently proposed as a new type of Cache timing attacks.There are three essential factors in this attack,which are monitored instructions.threshold and waiting interval.However,existing literature seldom exploit how and why they could affect the system.This paper aims to study the impacts of these three parameters,and the method of how to choose optimal values.The complete rules for choosing the monitored instructions based on necessary and sufficient condition are proposed.How to select the optimal threshold based on Bayesian binary signal detection principal is also proposed.Meanwhile,the time sequence model of monitoring is constructed and the calculation of the optimal waiting interval is specified.Extensive experiments are conducted on RSA implemented with binary square-and-multiply algorithm.The results show that the average success rate of full RSA key recovery is89.67%.
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.