This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-E...This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.展开更多
The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported fro...The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported from CAD system. The field variable (longitudinal electric/magnetic field) was constructed by the same NURBS basis functions as the representation of geometric model. In the refinement procedure used to get a more accurate solution, communication with original CAD system is unnecessary and the geometric shape is kept unchanged. The Helrnholtz equation is weakened to a set of general eigenvalue equation by virtual work principal with diseretized degree-of-freedom on control points. Elliptical waveguides with three typical eccentricities, 0.1, 0.5 and 0.9, are calculated by IGA with different size mesh. The first four cutoff wavenumbers are obtained even in coarse mesh and the RMS of first 25 cutoff wavenumbers has much more swift convergence rate with decreasing the mesh size than traditional FEM. The accuracy and robustness of the proposed method are validated by elliptical waveguides, and also the method can be applied to waveguides with arbitrary cross sections.展开更多
Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-mo...Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.展开更多
To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed a...To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.展开更多
文摘This study aims to predict ground surface settlement due to shallow tunneling and introduce the most affecting parameters on this phenomenon.Based on data collected from Shanghai LRT Line 2 project undertaken by TBM-EPB method,this research has considered the tunnel's geometric,strength,and operational factors as the dependent variables.At first,multiple regression(MR) method was used to propose equations based on various parameters.The results indicated the dependency of surface settlement on many parameters so that the interactions among different parameters make it impossible to use MR method as it leads to equations of poor accuracy.As such,adaptive neuro-fuzzy inference system(ANFIS),was used to evaluate its capabilities in terms of predicting surface settlement.Among generated ANFIS models,the model with all input parameters considered produced the best prediction,so as its associated R^2 in the test phase was obtained to be 0.957.The equations and models in which operational factors were taken into consideration gave better prediction results indicating larger relative effect of such factors.For sensitivity analysis of ANFIS model,cosine amplitude method(CAM) was employed; among other dependent variables,fill factor of grouting(n) and grouting pressure(P) were identified as the most affecting parameters.
基金Project(GZ566) supported by the China-German Joint Research FoundationProjects(51138011, 51109134) supported by the National Natural Science Foundation of China
文摘The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported from CAD system. The field variable (longitudinal electric/magnetic field) was constructed by the same NURBS basis functions as the representation of geometric model. In the refinement procedure used to get a more accurate solution, communication with original CAD system is unnecessary and the geometric shape is kept unchanged. The Helrnholtz equation is weakened to a set of general eigenvalue equation by virtual work principal with diseretized degree-of-freedom on control points. Elliptical waveguides with three typical eccentricities, 0.1, 0.5 and 0.9, are calculated by IGA with different size mesh. The first four cutoff wavenumbers are obtained even in coarse mesh and the RMS of first 25 cutoff wavenumbers has much more swift convergence rate with decreasing the mesh size than traditional FEM. The accuracy and robustness of the proposed method are validated by elliptical waveguides, and also the method can be applied to waveguides with arbitrary cross sections.
基金Project(2006AA09Z235)supported by the National High Technology Research and Development Program of ChinaProject(CX2009B003)supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Autonomous underwater vehicles (AUVs) navigating on the sea surface are usually required to complete the communication tasks in complex sea conditions. The movement forms and flow field characteristics of a multi-moving state AUV navigating in head sea at high speed were studied. The mathematical model on longitudinal motion of the high-speed AUV in head sea was established with considering the hydrodynamic lift based on strip theory, which was solved to get the heave and pitch of the AUV by Gaussian elimination method. Based on this, computational fluid dynamics (CFD) method was used to establish the mathematical model of the unsteady viscous flow around the AUV with considering free surface effort by using the Reynolds-averaged Navier-Stokes (RANS) equations, shear-stress transport (SST) k-w model and volume of fluid (VOF) model. The three-dimensional numerical wave in the computational field was realized through defining the unsteady inlet boundary condition. The motion forms of the AUV navigating in head sea at high speed were carried out by the program source code of user-defined function (UDF) based on dynamic mesh. The hydrodynamic parameters of the AUV such as drag, lift, pitch torque, velocity, pressure and wave profile were got, which reflect well the real ambient flow field of the AUV navigating in head sea at high speed. The computational wave profile agrees well with the experimental phenomenon of a wave-piercing surface vehicle. The force law of the AUV under the impacts of waves was analyzed qualitatively and quantitatively, which provides an effective theoretical guidance and technical support for the dynamics research and shape design of the AUV in real complex environnaent.
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(20091341) supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(HF-08-01-2011-240) supported by the Graduates’ Innovation Fund of Huazhong University of Science and Technology,China
文摘To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.