模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑...模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑制子模块电容电压纹波,需使用较大电容值的子模块电容,其显著增加系统的硬件成本和体积。该文提出一种基于器件复用的有源功率解耦型FB-SM(FB-SM with active power decoupling,APD-SM),通过子模块中的器件复用,使其兼具电容电压纹波抑制和直流故障穿越能力,同时不改变MMC拓扑的外输出特性。相较于传统FB-SM拓扑,该拓扑可在全功率因数范围内显著抑制子模块电容电压纹波;详细介绍该拓扑的推演规律、运行原理、调制方法和控制策略,并对拓扑结构中的关键参数进行分析和设计,从多方面与传统FB-SM拓扑进行对比分析;最后,基于PLECS仿真平台搭建APD-SM和FB-SM型MMC仿真模型(分别缩写为APD-MMC和FB-MMC),并基于样机模型进行实验验证。仿真和实验结果验证该拓扑和控制策略的有效性。展开更多
In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on th...In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.展开更多
An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis a...An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.展开更多
文摘模块化多电平变换器(modular multilevel converter,MMC)拓扑已广泛应用于中高压大功率输配电和电机驱动领域。其中,具有直流故障穿越能力的全桥子模块(full-bridge submodule,FB-SM)型MMC拓扑目前正受到越来越多的关注和应用,但为了抑制子模块电容电压纹波,需使用较大电容值的子模块电容,其显著增加系统的硬件成本和体积。该文提出一种基于器件复用的有源功率解耦型FB-SM(FB-SM with active power decoupling,APD-SM),通过子模块中的器件复用,使其兼具电容电压纹波抑制和直流故障穿越能力,同时不改变MMC拓扑的外输出特性。相较于传统FB-SM拓扑,该拓扑可在全功率因数范围内显著抑制子模块电容电压纹波;详细介绍该拓扑的推演规律、运行原理、调制方法和控制策略,并对拓扑结构中的关键参数进行分析和设计,从多方面与传统FB-SM拓扑进行对比分析;最后,基于PLECS仿真平台搭建APD-SM和FB-SM型MMC仿真模型(分别缩写为APD-MMC和FB-MMC),并基于样机模型进行实验验证。仿真和实验结果验证该拓扑和控制策略的有效性。
基金Projects(60634020, 61074117) supported by the National Natural Science Foundation of China
文摘In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.
基金Project(61174068)supported by the National Natural Science Foundation of China
文摘An inverse system method based optimal control strategy was proposed for the shunt hybrid active power filter (SHAPF) to enhance its harmonic elimination performance. Based on the inverse system method, the d-axis and q-axis current dynamics of the SHAPF system were decoupled and linearized into two pseudolinear subsystems. Then, an optimal feedback controUer was designed for the pseudolinear system, and the stability condition of the resulting zero dynamics was presented. Under the control strategy, the current dynamics can asymptotically converge to their reference states and the zero dynamics can be bounded. Simulation results show that the proposed control strategy is robust against load variations and system parameter mismatches, its steady-state performance is better than that of the traditional linear control strategy.